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Abstract
Much of the vibration isolation research has focused on uni-directional behavior of the
system. For many real-life problems, the role of rotational and shear stiffness components
must be understood and a multi-dimensional formulation needs to be developed, especially at
higher frequencies. Consequently, characterization and modeling of vibration isolators is
increasingly becoming more important in mid and high frequency regimes where very few
methods are known to exist. This paper presents a new experimental identification method
that yields frequency-dependent multi-dimensional dynamic stiffnesses of an isolator. The
proposed identification method is applied to one practical rubber isolator, and experimental
results are successfully compared with data measured on commercial equipment for axial
motions. The effects of multi-dimensional isolator on vibration power transmitted to the
receiver structure are analytically investigated. Rigid body and Timoshenko beam models are
employed to describe source and path respectively. Infinite beam is used to represent a
compliant foundation. Also, linear, time-invariant system assumption is made.

1. Introduction
Vibration isolators are often characterized as discrete elastic elements, with or without

viscous or hysteritic damping [1]. The compressional stiffness term is typically used to
develop isolation system models though the transverse (shear) and rotational components
could be a significant contributor to the vibration transmission [2]. Additionally, at higher
frequencies, inertial or standing wave effects occur within the isolator. Nonetheless, the
isolators are still modeled by many researchers in terms of spectrally-invariant discrete
stiffness elements without any cross-axis coupling terms [2]. Such descriptions are clearly
inadequate at higher frequencies. Consequently, one must adopt the distributed parameter
approach. Only a few articles have examined the elastomeric devices using the continuous
vibration system theories [3-4].

Experimental methods must be adopted to dynamically characterize stiffnesses of rubber,
hydraulic, air and metallic isolators since they invariably exhibit frequency-dependent
properties and are sensitive to mean loads and dynamic excitation levels. Historically,
characterization methods have focused on axial or compressional stiffness. Also, in most



studies only the lower frequency range has been considered [1-2], and consequently the direct
measurement of dynamic stiffness on commercial machines is typically limited to lower
frequencies. Several approximate identification methods for transfer stiffness of resilient
elements have been proposed at higher frequencies and have been refined for lower
frequencies [5]. See references [4, 6] for a detailed literature review and a list of relevant
articles.

Overall, an appropriate characterization method for the measurement of multi-
dimensional stiffnesses of an isolator has yet to be proposed. The underlying measurement
and estimation issues are even more difficult as the frequency increases [1, 5]. Also, no prior
article has examined the shear deformation and rotary inertia effects of an isolator. In this
article, we propose a new dynamic characterization method that should be valid over low,
mid and high frequency regimes, based on a new isolator stiffness matrix formulation.
Further, we examine the influence of isolator parameters on the behavior of an isolation
system using a continuous system model. Problem formulation is conceptually shown in
Figure 1 in the context of source, path (isolator) and receiver. The scope is limited to a linear
time-invariant (LTI) system, and the effects of preload, etc. are not considered.

Figure 1. Problem formulation. (a) Isolator is depicted as a multi-dimensional path for any
practical problem; (b) source-path-receiver system and their mobility matrices ,  and .
Here F and V are vectors; (c) Vibration transmission via multi-dimensional motions of an
isolator to a beam receiver; (d) a cylindrical isolator with static stiffness components.

2. identification of mobility matrix of an isolator
Multi-dimensional mobility matrix of a vibration isolator can be identified using a

mobility synthesis formulation. Figure 2(a) shows a schematic that is used for experimental
work. Multi-degree of freedom connections at both ends of an isolator are modeled since the
information at both ends of a sub-system is needed. Two masses are attached to an isolator as
shown in Figure 2(a) and the synthesized mobility for the overall system is formulated first.
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Then the mobility matrix of an isolator is reformulated given the synthesized formulation.
Finally, the mobility matrix of an isolator can be obtained by substituting the synthesized
mobility matrix with measured mobility matrix for the combined system. It is possible to
measure all elements of the multi-dimensional mobility matrix from the fact that an
application of force with an offset from the reference point results in both force and moment
simultaneously.  Mobility model for one rubber isolator is identified using the proposed
procedure. Two masses are attached to the ends of each isolator and the combined system of
Figure 2(a) is suspended to simulate free boundaries. The reciprocity principle has been
applied throughout the synthesis procedure since small inconsistencies or noise in frequency
response function measurements can significantly contaminate results via the numerical
inversion process that is essential to the entire procedure. Typical results for transfer
stiffnesses are shown in Figures 3 and 4 for an isolator example of Figure 2(b). Note that the
experimental validations are conducted using the MTS 831.50 machine (up to 1000 Hz). The
MTS method employs the blocked end boundary and only the transfer stiffness is measured.
First, stiffness modulus and loss angle in axial direction are shown in Figures 12. Static
stiffness in axial motion is 5 N/mm for the isolator. Identified results from the proposed
experiment are given from 0 to 2000 Hz. Predictions for zero preload are compared with the
MTS test results that are obtained under three different preloads, up to 1 kHz. Excellent
agreements are observed between results based on the proposed identification method and
experimental data yield by the MTS machine. Similar results are seen for two additional
mounts [4].

Figure 2. Proposed identification method. (a) Simplified scheme to identify mobilities of an
isolator (b) practical rubber isolator used for experimental studies.

Figure 3. Comparison of axial dynamic stiffnesses for isolator. (a) Dynamic stiffness
modulus; (b) loss angle. Key:         , Mobility model;         , Measured (MTS): mean = 3 N;
        , Measured (MTS): mean = 12 N;         , Measured (MTS): mean = 23 N.
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Figure 4. Transfer stiffnesses in flexural motion for isolator, as extracted using the
identification scheme. (a) Lateral stiffness modulus; (b) coupling stiffness modulus; (c)
coupling stiffness modulus; (d) rotational stiffness. Key:          , Experimental result;       ,
curve fit.

3. Vibration power transmitted to an infinite beam receiver
The vibrational behavior is examined for an isolation system (Figure 1c) with an infinite

beam receiver. Harmonic excitation is applied at the mass center of a cubic rigid body with a
mass of 1 kg and a length of 50 mm. Circular isolator is shown in Figure 1(d) along with
vibration components transmitted through the path. The isolator is modeled using the
Timoshenko beam theory (flexural motion) and the wave equation (longitudinal motion).
Detailed mathematical treatment is given in the recent journal article we wrote [6]. Note that
the coupling mobility does not exist for an infinite beam receiver. However, a coupling arises
because the motion (or force) in shear direction of an isolator is coupled with the longitudinal
direction of a receiver beam. The Young’s modulus, shear modulus and mass density of a
rubber isolator of for this study are 1.62 MPa, 5 MPa and 1000 kg/m3  respectively. Also, the
circular cylindrical isolator has the length of 30 mm and the radius of 12 mm. Material
properties of a receiver beam having a thickness of 10 mm and a width of 100 mm are

410688.6 ×  MPa, 2723 kg/m3 and 0.001 for Young’s modulus, mass density and loss factor
respectively. In order to understand the effect of isolator properties, it is useful to examine the
static stiffnesses ( ) of an isolator. It should be noted that flexural stiffnesses have to be
dealt with in a matrix form since there exist coupling terms between lateral (shear ) and
rotational ( θ ) stiffnesses. Further, note that  (or ) is common to all stiffness terms. Highly
damped material with a loss factor of 0.3 is used for this isolator so that overall frequency-
dependent characteristics are observed without the influence of isolator resonances. Results
for  are shown in Figure 5(a) for a variation in  values for an isolator when a harmonic
moment is applied to the mass center of a rigid body source. It is observed in Figure 5(a) that

 rises due to an increase in  as the frequency increases. Additionally, the  spectra of

0 500 1000 1500 2000
0

200

400

600

M
ag

: 
N

/m
m

0 500 1000 1500 2000
0

1000

2000

3000

M
ag

: 
N

/r
ad

0 500 1000 1500 2000
0

500

1000

1500

2000

M
ag

: 
N

Frequency (Hz)
0 500 1000 1500 2000

0

50

100

150

M
ag

: 
N

m
/r

ad

Frequency (Hz)



Figure 5(a) decrease as the frequency increases. The power efficiency is also shown in Figure
5(b) when a harmonic force ( ) is applied to the mass center of a source. In this case, only
axial stiffness of the mount affects vibration power transmission. Like the moment
application case,  grows with  as the frequency increases. Also, note that the  spectra of
Figure 5(b) for the axial power transmission are close to unity at low frequencies unlike the
one of Figure 5(a) for the flexural power transmission. Normalized power components with
respect to the total actual power transmitted to the receiver beam are also shown in Figures
5(c-d) for the shear modulus variation. As discussed previously, axial and coupling power
components do not exist in this case and therefore the sum of the normalized lateral (shear
direction of mount) and rotational power components is equal to unity. Overall, the lateral
power component is larger than the rotational component. It is shown in Figure 5(c-d) that the
lateral component dominates.

Figure 5. Effect of shear modulus  of an isolator on efficiency ( ) with an infinite beam
receiver. (a) For a Timoshenko beam isolator model given moment excitation; (b) given force
excitation . Key:           , 0.5 ;           , ;            , 2 . (c) normalized vibration power
transmission given moment excitation 0.5G; (d) normalized vibration power transmission
given moment excitation 2G. Key:           , axial (y);           , rotational ( θ );           , lateral (x).
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Conclusion
A new characterization method has been proposed for the identification of multi-

dimensional frequency-dependent transfer stiffnesses of an isolator. Our method uses a
physical system that consists of two inertial elements and an isolator. Further, refined multi-
dimensional mobility synthesis and decomposition procedures have been formulated. Results
of the proposed scheme compare well with test data for one practical isolator in axial motions
on a commercial machine up to 1 kHz. Another main contribution of this paper is the
application of continuous system theory to an elastomeric isolator and the examination of
associated flexural and longitudinal motions of the source-path-receiver system. Two
different frequency response characteristics of an elastomeric isolator are predicted by the
Timoshenko beam theory. The second type solution, that has been previously believed to
occur at extremely high frequencies (say around 80 kHz) for metallic structures and therefore
not of interest in structural dynamics, takes place at relatively low frequencies (say around
1.5 kHz) for a rubberlike material. The behavior of a typical vibration isolation system has
been examined using the power transmitted to an infinite beam receiver, when excited by a
harmonic moment or force at the source. Parametric study of isolator properties on the
transmission measures has been conducted using the Timoshenko beam isolator model and an
infinite beam receiver. The vibration power efficiency for an isolation system with an infinite
beam structure increase with frequency as the isolator shear modulus is increased. Future
work is required to quantify the vibration source in terms of power transmission. Proper
interpretation of various vibration isolation measures for a multi-dimensional system, such as
power efficiency and effectiveness, must also be sought over a broad range of frequencies.
Finally, nonlinear effects of an isolator should be examined.
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