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In an earlier study, the frequency response characteristics of a single-degree-of-freedom
system with a clearance non-linearity were studied. The current study, an extension of the
earlier work, is concerned with the frequency response characteristics of a multi-degree-of-
freedom system with clearances. The method of harmonic balance is used to develop
approximate analytical solutions of the undamped equations of motion of a multi-degree-
of-freedom system composed of three coupled non-linear oscillators. For primary reson-
ances and a harmonic excitation, general formulations are presented which can be used
to study both the existence and the stability of the solutions. These general formulations
are used to discuss a number of modal spacing and modal coupling issues. An analysis
methodology for multi-degree-of-freedom systems is introduced and illustrated by two
special but practical cases: a strongly non-linear system and a weakly non-lingar system.
The results of the analysis of the special cases are validated by using analog simulation.
It is shown that an analysis of the special cases of the general multi-degree-of-freedom
non-linear formulation can provide not only an improved understanding of the dynamic
behavior of non-linear systems, but also can be used as the basis for the development of
simplified approximate solutions. The limitations of the current study and areas for further
research are discussed.

1. INTRODUCTION

Clearances exist in many complex mechanical systems either by design, due to manufac-
turing errors and wear, or as the result of mechanical failures. Vibration of a translational
or rotational system with clearances can resuit in relative motion across the clearance
space and impacting between the components. Repeated impacts, referred to as vibro-
impacts, may lead to excessive noise, large dynamic loads, and large changes in the
dynamic stiffness.

Vibro-impact problems have been studied by a number of investigators [1-28], most
of whom use a simple single-degree-of-freedom (SDOF) model in which the clearance
is modeled as a piecewise linear function. A number of analytical methods are available
for studying the dynamic behavior of mechanical systems with clearances; these include
piecewise linear techniques which couple a series of linear solutions, associated with the
piecewise linear function, by using appropriate conditions at impact [1, 2, 4, 9-13, 15,
16], digital simultaion [1-3, 15-18, 20, 22], analog simulation [17, 18], or an approximate
analytical technique based on the method of harmonic balance [19, 21, 22, 24, 26-28].
The emphasis of most of the vibro-impact analyses [1-6, 8, 9, 11, 12, 17, 18, 20] has been
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on the determination of the actual time domain response for a harmonic excitation and
these have been limited to a SDOF system.

In an effort to gain a more fundamental understanding of the frequency response
characteristics of a SDOF system with a clearance non-linearity, Comparin and Singh
[28] relaxed the requirement for predicting the actual time domain response and instead
considered the response in terms of r.m.s. values. By using the method of harmonic
balance approximate analytical solutions for primary resonance and a harmonic excitation
were obtained in terms of the system parameters. These solutions resulted in an improved
understanding of the frequency response characteristics of a SDOF system with a clearance
non-linearity subjected to a harmonic excitation.

Many mechanical systems are, however, better represented as multi-degree-of-freedom
(MDOF) systems and can in fact be viewed as a set of coupled non-linear oscillators
[27]. For the MDOF system, it is necessary to consider not only the characteristics of a
single oscillator but also the coupling between the oscillators. Te gain a more fundamental
understanding of the frequency response characteristics of MDOF systems with clearances,
in this study the SDOF analysis of Comparin and Singh [28] is extended to the case of
coupled non-linear oscillators.

2. PROBLEM FORMULATION FOR ANALYTICAL STUDY

A generic four-degree-of-freedom system is shown in Figure 1. The system is semi-
definite with three non-zero natural frequencies. There are three non-linear stiffness
elements in this model, K, f,(8,), K./:(8;) and K,f3(8,). K,, K; and K; are constants
and f(8) is a generic non-linear element, referred to as a clearance type non-linearity,
which is shown in Figure 2. Here a is a measure of the strength of the non-linearity.
When a is close to one the system is weakly non-linear and when « is much greater or
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Figure 1. Generic multi-degree-of-freedom system.
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Figure 2. Generic clearance type non-linearity.
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much less than one the system is strongly non-linear (a list of symbols is given in the
Appendix). In the absence of damping, the equations of motion are

MI’XI-'-KI.{](S]):FI; Mux’n“Klﬁ(51)+K2fz(5z)=_Fil, (la,b)
MinX — Ko fas(8)+ Kafy(8)=—Fp;,  MpnXyy—Kifi(85)=—Fp, (lc,d)

where
51=X1_Xu, 8= Xy — X, 8= X — Xpv, (1e,f, g)
—(1-a;)b;, b < §;

5+(1—a)b, &§<-b

The equations of motion for the semi-definite system can be simplified by rewriting
equations (1) in terms of the relative displacement, §;, between the inertia elements. The
simplified equations for the relative displacements are

M,8,+ K, f1(8,) — Ko M/ My )fo(85) = Foy + F(0), (2a)
Myd,+ K, £:(8:) — K\(Mof M) fi(8)) — Ka( Mo/ My )f5(83) = Foa, (2b)
M353+ K f2(85) — Ky( M/ My 1 5(82) = Fpa, (2¢)
where:
M My, MMy, M My
M=—— M=— M= {2d-
"M+ M, PMy+ My T My + My &
FoaMy | Fo M, FopMy | FoyMs
Fpys———+——, Fo,=— + \ 2g,.h
M, T My T M, My (. h)
F,=— Frn1iM; + F.vM, Fo= ForM, (i, )

» . '
My, M,y M;

The non-linear functions £;(5;), j =1, 2, 3, are defined in terms of a stiffness break point
b; and a relative stiffness between the stages o;. The equations of motlon are non-
dlmensmnallzed as follows: length 6 = §;/ b, b b ,/ b, time = tw,y, where =K,/ M,,
force F,, = F,,/Mpbw?,, F F/Mlbw“ and frequency 2 =0Q/w,, O, =K,/ Mw,,
where K, i=1, 2, 3 and ;—1 2, 3, are the coefficients of f(§;) in equation (2). The
non-dimensional equations of motion become

1 0 0](8, Qi -0 o 1(A(5) F.+F
0 1 08+ -23 25, 0L |A6);= Fus 3}, (3a)
0 0 t||4 0 -40%, 0 £+(83) Fous
5-(-a)b, <3
fi(&)= czjaj, —bj < b3 (3b)
81+(1-aj)5}, 5

The primary interest of this study is the vibro-impact behavior which is described by
the relative motion 6 between the inertia elements. A study of the dynamic behavior of
the system, therefore, reduces to a study of the solution of equations (3). Once the relative
motion is known, the absolute motion can be easily obtained.
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The method of harmonic balance will be used to obtain the solutions and their stability
will be studied by using a perturbation technique. The analysis will be limited in scope
to consider the following: (1) a non-linear stiffness defined by a two-stage symmetric
clearance non-linearity with constant K, and a stiffness ratio 0= o, <1; (2} no damping;
{3} an external excitation composed of a mean component and a single frequency
alternating component; (4) steady state frequency response for primary resonances only;
and (5) a stability analysis associated with only the first harmonic of the response {primary
resonance).

3. STEADY STATE SOLUTION

3.1. GOVERNING EQUATIONS

The method of harmonic balance is now used to obtain an approximate analytical
solution of the MDOF system (3). The solution is developed in the same manner as for
the SDOF system described by Comparin and Singh [28]. The basic steps are repeated
here for clarity. The excitation is assumed to have the form

FI=F_‘MI+FP COSs (ﬂpt-+¢pp), F2=Fm2 and F_'3=Fm3. (4)

Here F,,; represents the mean transmitted force associated with each relative displacement
and F, is the amplitude of the vibratory component acting on the first inertia at frequency
{1, and relative phase angle ¢r,. The approximate solution is assumed to have the form

§="8y+8,co8 (QI+e,), Jj=123. (5}

The constant term S_mj- is used to account for the steady state offset, or bias, introduced
by the mean load component I:'mj. The term S—Pj is a positive constant and represents the
amplitude of the forced response due to the alternating forceF,. For the solution given
by equation (5} it is assumed that the forced response of equations (3) is given by the
first harmonic only and, therefore, not only the highest harmonics and the possibility of
superharmonics or subharmonics are neglected but also the possibility of combination
resonances and internal resonances.

The non-linearities £;(§;) are expanded in a Fourier series, retaining only the mean and
first harmonic terms for each non-linearity. The non-linear functions given in terms of
the describing functions Nj,,; and Ny, are

F(8:) = NpyBy + Ny 008 055, j=1,2,3, (6a)
where
- - 1 . -
Nymj (8, 8p5) = —¢ j £i(8;} dey, {6b)
8,y Jo
_ 2 S = _
prj(amj’ 62!‘) = E f_}taj} Cos Py d‘opj, Pp = ﬂpt + ¢pj' (GC, d)
g- LA ]

Substituting equations (4), (5) and (6} into equations (3} and equating coefficients of
like harmonics yields a set of coupled non-linear algebraic equations, Solving these
equations for &,; and §,; and redefining the mean components relative to the center of
their respective non-linearities yields the foilowing set of non.linear algebraic equations:

~ F,. — F, = F,..—F, = F,
5 = L =1 2 3 Fm — mi Fm - ml mil F .= miv _
mj mej’ b 3 &y -ty 1 bKl, 2 sz y ml bK3’ (?a d)
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5 = :t(prﬁfl)[(pr2w ﬁﬁ/ﬂgz}(h{rps_ﬂfn’ﬂia)_{ﬁgsf}%z/ﬁ%zﬁgs)hﬂfpzh{rps]

'l A (7e)
5 _i{ﬁpﬁ;/ﬁflﬁ§2)h{fﬁ](h{fp3'—ﬁ;)""{ji:i} 7
:F A . { f}
= i(ﬁpﬁgzﬂ;/ﬁ%lﬁ%zﬁ%s) Np Ny 0
8p3: A [ tan(¢Fp_¢pl)= “‘]A! (TE, h)
P
ﬁi)( Q_ﬁ_) 25,85 ]( a2
A= - A - Ny N, =z
= {[ (o o \Ne T m,) T am, e e [\ N g,
32\ (32,032 |
_(prl _ﬁﬁ)ﬁiﬁ_zlvfpzmw}- (7i)

Here a positive sign is used when &,, and F, are in phase and a negative sign when they
are out of phase where the relative phase, (¢r, — ¢,,), is defined by equation {7h). The
describing functions Np,; and Ng, are given by

5. b, — 8. -b,—-85,;
Nm-=1+—fj—{(1— ? [G( - ’“J)__G( i w)]}’ 8
o 25, @) 5, 5, (8a)
1 () (B ) ()]
NS5 VTS SRR = 11 I
G(,;):{(z/”)(“ sin™' u+vi—gp?), Inlél], (80)
|11, el >1
-1, m<-1
H{uy={2/m)(sin" ptpuvl-u?), |ul<1}, (8d)
+1, p=>1
= (:‘tE; _gmj)/gpj' (83)

To facilitate the development of the solutions in terms of the design variables, the
functions G and H are replaced with truncated series expansions. The truncated series
expressions are obtained by retaining only the first two terms in each series and adjusting
the coefficient of the second term to yield the actual value of the series when the argument
£ =1. This modification is necessary because when the argument is close to 1, the
contribution from the higher terms is significant. For small values of g, the contribution
from the higher terms is small and the modification is not required as these terms have
little or no effect on the functions G and H. The truncated series expressions which are
within 5% of the original G and within 6% for H are found to be as follows for |x| < 1:

G(u)s%{1+(3§3)u2}, H{ma%{u—(“—;f)w}. (98, b)

In all cases, when a; =1 the describing functions Ny,,; and Ny, given by equations (8a)
and (8b), reduce to one, which is the linear case.

The MDOF system can be viewed as essentially consisting of three coupled nonlinear
oscillators; the 1-I1 oscillator, the 1I-1T1 oscillator and the I1I-IV oscillator. To understand
better the type of behavior which may be expected, consider the physical effect of the
non-linear stiffinesses an one of the oscillators. The overall response can be separated
into three different regimes: a no-impact regime, a single.sided impact regime, and a
two-sided impact regime. The different impact regimes are illustrated for &« =0 in Figure
3
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Figure 3. Tllustration of different impact regimes: (a) no impacts; (b) single-sided impacts; (¢} two-sided
impacts.
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The non-linearity can be viewed as an amplitude dependent stiffness with an average
value given by the relative amount of time (over one period of vibration) that the oscillator
is in one stage versus the other. As the amplitude of the alternating component 5,, changes
so does the stiffness. The oscillator is said to be hardening if the stifiness increases for
increasing &, and softening if the stiffness decreases for increasing 5,. For the clearance
type non-linearity, the hardening or softening character will depend on the location of
the mean component and on whether the oscillator is undergoing single- or two-sided
impacts (the system is linear for the no-impact case). For single-sided impacts if the mean
component (static deflection) is in the second stage, as S_p increases the average stiffness
decreases because the amount of time the system spends in the first stage increases and
the system is softening. For the two-sided impact case and the single-sided case where
the mean component is in the first stage the situation is reversed and the average stiffness
will increase as 3, increases, resulting in a hardening system. Each oscillator may undergo
any or all of the different impact regimes, so the MDOF system may have a total of
3% 3% 3 =27 cases. Further complicating the situation is the fact that the oscillators are
dynamically coupled; therefore, the behavior of one will, in general, depend on the type
of vibration experienced by the other two. With these factors in mind, the general behavior
for the different impact regimes of the MDOF system are discussed in the following
sections.

3.2, NO-IMPACT CASE
For a given oscillator, impacts will not occur if one of the following conditions is met:
type 1! §,,+8,<b and 5,-8,>-b; {10a)
type 2: 8,;+8,>b, and &,,—5,>b. (10b)
The describing functions reduce to
type 1: Niy=0o; and Ny =a; (11a)
type 2: Ny =1—-(1—a,}/5,, and Ny =1; (11b)
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these are of the same form as for a SDOF oscillator [28]. For illusiration purposes,
consider the I-II oscillator (j = 1). Substituting equations (11) into equations (7) yield,
for type 1,

— Foa = F ﬁz)( ﬁz) 023032 ]/
=" &, =t=L1{ Nyp,— Npa—=£ Nga N, 12a,b
ey ﬂi[( s \Ne s, ", e | A (20

a2; 22\ 25,403 ]( r?)
= _ ekl -3 2 N _TE
4 {[(“ n)(Nf” nzz) s, o [\ Mo~ i,
!)2 £23,4)
(o) ),
and for type 2,
gm]=le+(1_al)519 (12d)
_ F ﬁz N3 25,42
5,,;15,;;&1[(%2 s )(J\rﬂ,3 Q;’) nzzniszNf,J]/A (12e)
) )] 1)
4 {( 0%1)(N o2 nu) 0102 PN 03,
Q_ 023032 }
(1 ﬂ )Q22Q2 prszP3 (lZf)

The mean component of the displacement §,,, is constant and is the same as would
be expected for a linear system. The alternating component gpl , however, is not necessarily
linear for the no-impact case and will be linear only if the other two oscillators are also
in a no-impact regime. Equation (12) is single valued in &, and 8, 1 and solutions will
always exist.

The transition frequency from no impacts is calculated by using equations (12) when
8,1=|6,— 8n|. The frequency equation has the general form

a, 2%+ a2+ a, 05+ a,=0. (13)

The coefficients wiil depend on the motion of the other two oscillators (the values of Ny,
and Ng,,). Because F, can be positive or negative (in phase or out of phase), equation
(13) will have a total of 12 roots. There can be as many as six positive real roots with
one above and one below each resonant peak in equation (12). The transition frequencies
are shown in Figure 4 for an idealized frequency response function.
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Figure 4, Transition frequencies between impact regimes.
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Although the preceding discussion was given in terms of the I-1I oscillator (j =1) the
behavior described also applies to the other two oscillators but the equations themselves
will be different.

3.3. IMPACT CASE: SINGLE- AND DOUBLE-SIDED

Impacts will occur for a given oscillator whenever the displacement repeatedly exceeds
the stiffness transitions at one or both sides. For single-sided impacts,

type 1: §,,+8,>b, and §,,~5,>-b; (14a)
type 2: §,,—68,>—b and §,,-5,<b; (14b)

and for two-sided impacts,
8> |bj—8, and  5,;>|h+8,, (14c)

The describing functions take the same form as for the SDOF oscillator [28] and are
as follows: for single-sided impacts,

oS () ()
Ny =1+ 2%, L= 1+ 5, 5, ) (15a)
(l+a) 5,

4—a\ (b —5,\°
5 ﬂ_ (b Sw)(l J}[l_(T)(Tp}) ], (15b)

Npi=1- 2(7; 2) (_—J) (15c)
Al-(59055)]

NPJ,—1~— 1-a 1-|— I . 15d

7 ( )(5;:; 2 5 (15d)

The equation for the mean component Smj is obtained by substituting equation (15a)
into equation (7a) and is, for single-sided impacts,

8o {Fm;+(1 2 j)(E_f_%_(W:Z)(E—Emj)z)}/aﬁ, cx,‘,v,-*llx'I (16a, b)

T 8, 27

and for two-sided impacts,

Spym—am . f 2ATD
Frsmj/ apj ™
Comparing equation {16} with the corresponding equations for the SDOF oscillator [28]
shows that the behavior of the mean component of an oscillator in a MDOF system is
the same as it is for the SDOF system. -
The equation for the alternating component S_pj is obtained by substituting equation
(15b) into equation (?) and is

(1—a;}b;. (16¢, d)

= (xFy+F)/ A, i=ts j=1,2,3, (17a)
where
_ E i 22\ a3L,0% ]
== | Ny == I N — =2 | =222 N LN, 17b
! m.[( o 'niz)( " §,) D057 (170)

_ _ ﬁmg,) ﬁz) ( QZ) 23,03, ]
m=Fa |\ {1-575 =) | Nps—=F | —=7=N
! ‘[(( o) e m) T\ ) T a, Nl [ (170
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_,  E03 a2
ﬁ:ﬁz_pr](prs o ) (17d)

—, _ :‘zfzrzg,) n: )( 0?3 ) 22,03, ( n? )]
2= F 1-—=—=5 INy,, —=Z U Nps—=L | ——=—=N..I N, - =2 17
2 [(( 22.0%)°7 22 70k 35,03 P 231 (17¢)

_ F 03,02,
b3 = meplepz, (17f)

- 2 @B\ G 2% 2,
Fi33=F}53[(prl_nfl)(prz Ei) _Q szprlepz .Q:Q2 prz(prl ﬁi) ’

(17g)

A={{ (=38 (oo 38) - G e (i~ 52)
% prszps(prl —3_%) }, {17h)
Foy =%(Ej ~ 8.1 —a;-}[l - (4—;"'—’)(b ;-f’")] (17i)
et -(EE]

Here A; in equation (17a) is given by equation (17h} when the appropriate describing
function Ny, is replaced by one for two-sided impacts or by a, for single-sided impacts.

Equation (17a} is similar to the equation for the undamped response of the SDOF
oscillator [28] and the existence of solutions is governed by the relative magnitude of
Fi; and F},. Specifically, when |F/,{=|F}| equation (17a) is single-valued and solutions
will always exist. If |F}| <|F},, however, the question of the existence of solutions
becomes more complicated. For a hardening oscillator, solutions exist when the displace-
ment is in phase with the force and do not exist when the two are out of phase (the
opposite occurs for a softening oscillator). For the MDOF system a phase change occurs
whenever 2, passes through a resonance (given by the zeros of equation (17h)) and will
manifest itself as a change in sign of the denominator of equation (17a). Hence, there
will be two solutions when the denominator of equation (17a) and F,sJI have the same
sign and no solutions when the signs are different.

To understand better the type of frequency response behavior which might be expected,
consider the following special cases,

If the off diagonal terms in equation (3a} are small relative to the diagonal terms the
coupling between the modes will be small and each will respond like a single-degree-of-
freedom system. For example, examine equations (17¢) and (17h) for two-sided impacts
and negligible coupling terms:

- (2 @
;sl Esl[(NJpZ E%E;)(pr3_1§&3)]’ (183)
.I')2 ﬁz 2
4 =(1-21) (o) (- ) am)

The only time that A4 and E', will have the same sign is when, for a hardening system
2; <1 and for a softening system 22> 1. Therefore, for this case a jump transition will
only occur at 22=1 and the oscillator in the MDOF system behaves like the SDOF
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oscillator with respect to the existence of solutions. Similar behavior is also exhibited by
the other two oscillators (j =2, 3} and is shown graphically in Figure 5 for an idealized
hardening system.

Now consider a system where the coupling terms are small but finite and the resonances
are widely spaced. From the bracketed terms in equations (17b) and {17¢), F}, is initially
positive (or negative) and undergoes a sign change near the zeros of F%,. The zeros of

", will occur between the zeros of A (resonances of the frequency response function}
and so for a hardening (softening) system F{s, and A will have the same sign just below
(above) each resonance and a different sign just above (below) each one. Therefore, for
the first oscillator, a jump transition may occur at each of the resonant peaks in the
frequency response function. For F'.,, the first zero of the bracketed term occurs at the
first resonant frequency, and the second zero occurs at the anti-resonance between the
second and third resonances. The signs for FL: and A will be the same on either side of
the first resonance but different on either side of the second two. Hence for this case a
jump transition can only occur at the second two resonances. Finally, for F., the zeros
will occur at the first two resonant frequencies and hence a jump transition can occur
only at the third. This case is illustrated for a hardening system in Figure 6. For the
previous cases it has been assumed that FJ; is either hardening or softening. For a type
2 system undergoing single-sided impacts, F',; can be both hardening and softening and
50 a transition can occur near any of the single-sided impact resonant frequencies.

801

N

| ] |
By Dy Ly

Frequency

Figure 5. Existence of impact solutions for an idealized MDOF hardening system undergoing two-sided
impacts with negligible coupling terms.
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Figure 6. Existence of impact solutions for an idealized MDOF hardening system undergoing two-sided
impacts with finite coupling terms and widely spaced modes.

The most general case is when the coupling terms are large and the modes closely
spaced. Analytically it is no longer possible to predict, a priori, where the jumps will
occur without considering a specific set of numerical parameters.

For the impact case, two types of transitions exist: one associated with a decrease in
S_pj as ﬁp moves away from a resonance and one associated with the jump phenomenon.
Thie frequency at which the first type of transition occurs is calculated by using equation
(17) when 8, =|8,,] + b; and again the characteristic frequency equation has the following
general form:

a, 25+ a5+ a,2:+a,=0. (19)

Like the no-impact case, the coefficients will depend on the motion of the other two
impact pairs and equation (19) can again have a maximum of six positive roots, one
above and one below each resonant peak {see Figure 4). The jump transitions occur at
the resonant frequencies which are found by solving for the zeros of equation (17h).

4, STABILITY OF STEADY STATE SOLUTIONS

The local stability of the solutions discussed in the previous section is determined by
perturbing the steady state solution and studying the resulting motion. If the perturbed
oscillating motion decays with time the solution is considered dynamically stable and if
it grows it is dynamically unstable. It should be pointed out that in this analysis only the
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first harmonic of the response is considered, and hence it is a local stability analysis. A
study of the global stability of the system requires a consideration of more complicated
types of resonances, which is beyond the scope of this study.

The solutions of the governing equations are perturbed such that:

8ty =By + 48, 8y =8, + 48, Bl = b+ Ad,,. (20a-c)

The perturbed solution is substituted into the original equations and expanded for small
perturbations by using a Taylor series with only the linear terms in the perturbed variables
retained. This results in a set of nine equations in the nine perturbed variables. Noting
that for zero damping, sin (¢, — ¢ ) =0, the simplified equations are manipulated to
reduce the number of coupling terms yielding the following equations in matrix form:

A, 0 0 A, O 0 o0 0 0]{45,) (O
0 Ay, 0 0 Ay 0 0 0 0]|l4s,., 0
0 0 Ay 0 0 Ay 0 0 0]145,; 0
0 0 0 A, 0 0 0 0 o0]|45, 0
0 0 0 Ay As O O 0 0|tds,, } =40} (21a)
0 0 0 0 Ay Ay O 0 0}]45,; 0
0 0 0 0 0 ¢ A, 0 0||ag, 0
6 0 0 o0 o0 o0 1 -1 o0lae. 0
o 0 0 o o0 0o O 1 —1]\4¢,; ) \ 0
Here
ING = N, =
AJI:__(meJ-F_"LJamj)’ Aju+3)=“(““—!'15 -), (21b,¢)
38, 5
(=-5)(=-5) aia == )(=-7
A —(N = =L E-=£)- E.’E E—T&)
O aUNT AT 2 anaL T TN 4
033,0% _ _ (. {2
- ngjﬁgj_zza(cl 54;1)} cos (¢, — dp1), (21d)
B (= 5 |
Aﬂ“ﬁ"g;:l =3_ﬁ§3 Cos (¢'p1_¢p2), (21e)
a2 72 ( ‘2) 03,035 ]
Ags=—| Npa—= -2 B -2 ) -2 F EE -
55 ( fp2 032)[( 2 ﬁ%z) 3 ,(2§3 02202 223 005{¢F, ép1), (21f)
0% _
Ags = ﬁ—za 2 €08 (2= dp3), (21g)
a3
02 o
Agg= _(prs_ﬁzz)(gs_h_&) cos (¢F o), (21h)
33 33
F - aNg, = .
An=—=5, == pr}+6_'§J'EI 8- (214,5)
11 P

The solutions for the perturbations have the general form
4;(1) =40 €™, (22)

where j=1,2,3. Here 4;(¢) represents the perturbed variable (45,;, 45,, or 46,), 4
represents the magnitude of the initial perturbation at 1 =0, and A represents the eigen-
values of equation (21),
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The stability of the solutions, therefore, depends on the eigenvalues A of equation
{(21a). For this case the characteristic equation involves only the diagonal terms and is

(An_)‘)(Azz"\)(Ass_t‘){AM_)‘){ASS_/\J(Aeb )"](A‘?T ( I_A)( 1_1\)"
{(23)

Since Ay, Az, Az, and A;; are always negative and & is always positive, the stability
is governed by the sign of A,,, Ass, and Ag. An examination of the terms in equation
(21) reveals that the stability is determined by considering only the terms like N, —
(ﬂ /.Q ;) as the net sign on the remaining terms is always positive when the appropriate
phase changes are included. Accordingly, the requirement for stability is

8, >¢— 24a)
" (g — 02/ 02 (242

where
;  no impacts {type 1
¢  no impacts Y ?mp {type 1)
1  no impacts (type 2)

=4 F.. single-sided i cts b, = ) ) ) . (24b, ¢
Fy Y smge_s ¢ tmpacts Gy ay; single-sided impacts ( )
F,; two-sided impacts

1 two-sided impacts

For the no-impact case solutions are always stable as would be expected. For the impact
cases (single- and two-sided), equation (24a) is the same as equations (33b) and (35) of
reference [28], with zero damping and, therefore, the condition for stability in the MDOQF
takes the same form as for the SDOF.

5. ANALYSIS OF TWO SPECIAL CASES

5.1. THE PHYSICAL MODEL

Since the MDOF non-linear system can exhibit a wide range of dynamic behavior,
general observations and conclusions usually cannot be made without considering special
cases. Further, a general non-linear analysis can be very complicated and expensive so
it is useful to know when a non-linear analysis is actually required and when a linear
analysis might be acceptable. Although the specific results from analyses of the special
cases considered here cannot be directly applied to a wider class of problems, the general
methodology introduced should be applicable. These points are illustrated by examining
two special but practical cases. Specifically, consider a non-linear oscillator connected
to a linear MDOF system, where the resonances associated witht the linear part of the
system are well separated from the resonance regime associated with the non-linear
oscillator. The two example cases considered here are described below and the relevant
numerical values are given in Table 1.

(a} Case 1: the resonance associated with the non-linear oscillator is assumed to be
the lowest resonance {{2,) in the system and the linear resonances ({1, and £25,) are
assumed to be much higher. The alternating load F,,; is applied to the non-linear oscillator
and the frequency response of the system is found for an operating frequency range
around the first resonance. The system is shown schematically in Figure 7 along with a
typical frequency response function.

(b) Case 2: the resonance associated with the non-linear oscillator is assumed to be
the highest resonance ({2y,) in the system and hence the linear resonances {2y, and
{15,) are assumed to be much lower. The alternating load F,; is applied to the linear
part of the system and the frequency response of the system is found for an operating
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TasLE 1

Numerical data sets chosen for the two special cases

Parameter Strongly non-lingar case 1 Weuakly non-linear case 2
a3 1-0 1-0
0i, 36 0-57
23, 057 0-57
722, 9-0 1-43
232, 60 3-30
73, 5-4 0-855
023 10-0 10-0
o, 0 1
a; 1 1
o 1 (]

b, 1-0 N/A
b, N/A N/A
b, N/A 010
F,. 0-25 0-05
F. 0-04 0-05
Fo 0-036 0-0125
£, (lower) 00625 0-050
£, (higher) 0-09375 0-075
P T i
Far ¥ o1 i |
— A% 'A% VAV T
| | m
o ___ I )
Mon-lingar ascil later Linear MDOF

Figure 7.

Amplitude

: |
Operating
range

L i

! Il

ﬁm

ﬁﬂ! 'r_le

Fraquency

Special case 1: (a) physical model; (b) typical driving point frequency response function.
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frequency range around the linear resonances. This system is shown schematically in
Figure 8, along with a typical frequency response function.

From a qualitative point of view, case 1 is strongly non-linear over the operating range
because the dynamic behavior of the overall system is dominated by the behavior of the
non-linear oscillator. Conversely, case 2 is weakly non-linear because the behavior of the
system is dominated by the linear system response in the operating range.

5.2. CASE 1: STRONGLY NON-LINEAR SYSTEM

Typical frequency response functions for the alternating components §,,, §,,, and §,,
are given in Figures 9 and 10. A typical comparison of the harmonic balance results and
analog simulation results is shown in Figure 11. A comparison of the frequency ranges
of the different impact regimes is given in Table 2. To facilitate a comparison with the
single impact pair system all frequencies have been scaled so that the linear resonant
frequency occurs a 1-0 instead of 0-80.

From an analysis of Figures 9 and 10, several conclusions can be drawn. First, by
comparing the frequency response functions for the strongly non-linear case {case 1) to
those given by Comparin and Singh [28] it is clear that the non-linear oscillator in the
MDOF systern behaves like the SDOF case except for a frequency shift associated with
the increased inertia of the coupled system. Second, over the frequency range of interest,
the shape of the frequency response functions for §,, and 8, are similar to §,, except
that the amplitudes are smaller. Finally, the amplitude ratios 5p2f5p1 and B_py‘gpl are
dependent on the motion of «S_pl as they differ from the linear case (e, =1) whenever
impacts occur.

Additional insight into the problem can be gained by simplifying the solutions given
by equations (7). For case 1 it is assumed that £2,, » 2, and ,, » £}, ; therefore, equations

(7) can be simplified to yield .
£ 52 32 &2 52
5 _i{_FP_}/{(l_ 25,007,405, )N __QP_} {25a)
r1 = A2 32 r A2 2 32 A2 el /A2 |
25, (27,(£25:005, — 125,025,) i3
o e i
Fanr + For [ t
A Y T VoY I TV
| | miv
I
b e A )
Linear MODOF Nen-linear oscil lator
T
Operating |
range ? !
I
I
g
I
£ :
2 .
5 |
E |
< |
I
I
I
I
I
I
_ SR S
L Ly fys
Frequency

Figure 8. Special case 2: {(a) physical model; (b} typical driving point frequency response function.
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F.gure 11. Frequency response B_P for case 1 when «, =0: (a) 5111' (b) S'PZ, (c} 5p3; *, harmonic balance;
[J, analog simulation.

TABLE 2
Comparison of the frequency ranges of impact regions for the strongly
non-linear case (case 1) between harmonic balance and analog simulation

Impact region Harmonic balance Analog simulation
No impact 2, <0782 0, <0750
2,>1-178 3,>1-150

Single-sided impact 0-782 < 2, < 0-800 0-750 < £, < 0-800

0-800< {2, <1-178 0-800 < {2, < 1-150

i} F.02 02,07 a3,02.02 a2
3 =+ _p _21 (_ 2 22 33 _ )N }/{(1_ _ = 33_ 12 El _ )N _Tp_}’
& {n%.néz 03,05, - 03,33, 25,(05,05-0%50%)) 7 3%

(25b)
{ Fo2. 0, (s )~ }
- D505\ 05,05 - 35,035, ™
8p3= 32 02 02 525 (25¢)
{(1 __ oo, )N _2&}
W05, - 050%0)) " &3,
The behavior observed in Figures 9 and 10 is clearly reflected in equations (25}. Equation
(25a) has the same form as for a SDOF system but with a shift in the resonance frequency

because of the increased inertia of the coupled system. The frequency response functions
for 8,, and &,, have the same form as for §,, and can be expressed in the general form

gp2 = Cla_pl ] a_pii = C25_pl ] (2635 b)




118 R. J. COMPARIN AND R. SINGH

where
23 ( 13,43 )
O == —— = | N 26
AL \DL05 - ) (6
00,05, ( 33,33 )
Co=sr"5= = = — | Ny, . 26d
2T 0L, \05L0%- 0503 (264)

For a linear system, N =1, the values of C, and C; are constant. When the system
is non-linear, 8,; and 8, 53 are still similar to Spl but C, and G, are no longer constant, as
N,y is now a functlon of 4,,. Therefore, N, is not only a quantitative but also a
qualitative measure of the effect of the non-linear oscillator on the rest of the system.
This information can be used to further simplify the analysis if desired., Consider the
case for a hardening system undergoing two-sided impacts. As 8,1 increases N,
approaches 1 from below and hence §,, and §,, will also approach the linear system
response ( N, = 1) from below. A conservative estimate of the response could be obtained
by analyzing a non-linear SDOF oscillator for §,, and approximating the amplitudes 852
and 8,; by using the corresponding linear system constants for C, and C,. The error
mvolved in the approximation can be estimated for the maximum deviation of Nj,, from
1.

3.3, CASE 2: WEAKLY NON-LINEAR SYSTEM

Typical frequency response functions for the alternating components &,,, 8,2, and 5,5
are given in Figures 12 and 13. A typical comparison of the harmonic balance results

10 .
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g N 2\

s O _m:%x'r*""”rx *o ;{ ‘\!-,_,

& w o

001 = \‘_3
0001 . 1 L I .
00 G5 1-0 1-5
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10 (c} «
{b) x o xfix, xX
@ 1F
&
3 2N ~ o1k * /\,
“ o x‘x’ !"“x-x-rr"x \\ o1 xx’ ‘x.*“w*x"
22" x, xx "
xR ] xx g x**
oo " I L I . oo . 1 " 1 R
0-6 o5 10 15 00 o5 1-0 1-5
Fraguancy

Figure 12, Frequency response (S_P for case 2 and F‘p=0-050: {a) 6-,,[, (b) 5_,,2, (c) 8_,,3;
*, non-linear.
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and analog simulation results is shown in Figure 14. A comparison of the frequency
ranges of the different impact regimes is given in Table 3.

For this case, the motion of §,, and 5,, is independent of the motion of §,; and is
given strictly by the linear case {a;=1)}. Over the frequency range of interest, the shape
of the frequency response function for 6:,; is similar to that of gpz. The amplitude ratio
8,3/ 8,2 is not constant and will be larger, when impacts occur, than the corresponding
linear case { &, = 1). Unlike the strongly non-linear case (case 1), over the frequency range
of interest, the non-linear oscillator in this MDOF system does not behave like the SDOF
system [28] as its motion is governed by the motion of ;. If ,, is small enough, impacts
do not occur but if &,, becomes sufficiently large, impacts will occur. Also solutions exist
over the entire impact regime and jump transitions do not occur.

It should be pointed out that the frequency response function for §,; will appear
somewhat distorted because the clearance space is the same order of magnitude as the
elastic deformation. This leads to very large slopes in the transition regions which appear
as jumps in the frequency response function. These “apparent™ jumps are different from
the jump transitions which occur in the strongly non-linear case (case 1). The jump
transitions in case 1 occur at resonance because of the phase change between the applied
force and the displacement. The apparent jumps in the response 6;,1 are not related to
phase changes as they do not necessarily occur at resonance. Instead they are simply a
function of the magnitude of §,,

For case 2, it is assumed that (2;; » (2, and equations {7) can be simplified to yield

5 _i{i[(l_%) n]}/{( _ﬁ)[(lﬁﬁésﬁ%z)_ﬂﬁﬁ]_ﬁms,]
-3 = a2 A2 = =5 =3 = = 73 f»
t 0505/ 0 25, 25,025,/ 251 Q70%

{27a)
) FQEI }/{( ﬁﬁ)[( ﬁis‘ﬁiz) Qz] ﬁfzg%]}
& .= 1—— —_—— — = = N 27
b2 = {9%1922 2 25,03, 23 11823, 270)

_ 12,03, 23,02\ 0221 7234402
5 =*\ g 00 ( )}/[("_)[(' > )‘"‘J‘]“ } 27
{n% 0L0L\N,, Gn0sL) W w4

TABLE 3

Comparison of the frequency ranges of impact regions for the weakly
non-linear case {case 2} between harmonic balance and analog simulation

Impact region Harmonic balance

Analog simulation

No impact 2, <0-590 1, <0600
0-840 < {2, < 1:200 0-850< £2, < 1:150
2,>1:350 £2,>1-350

Single-sided impact

Two-sided impact

0-590 < £2, < 0-640
0-780 << (2, < 0-840
1-200 < {2, << 1-240
1-320< (2, < 1-350

0640 < 3, <0:780
1:240 < 2, < 1:320

0-600< {2, < 0-650
0-800 < £2, < -850
1-150 < 2, < 1-200
1:300 < 02, < 1-350

0-650 < (3, < 0-800
1-200< 2, < 1-300
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The behavior shown in Figures 10 and 11 is clearly reflected in equations (27). 8_,,, and

8,, represent the response of a linear 2DOF linear system and 5p3 has the general form
8,1 =C8,,, (28a)

where
C = (25/Q3:)(1/ Npa). (28b)

C is constant for the linear system as Nj;=1 and will be a function of §,; when the
system is non-linear. Equation (28} would suggest that a weakly non-linear system, such
as the one given in case 2, could be analyzed as a linear system with the response of the
non-linear oscillator (6_,,3) calculated separately,

6. CONCLUDING REMARKS

This study represents an initial investigation into the dynamic behavior of MDOF
systems composed of coupled non-linear oscillators. The method of harmonic balance
was used to develop approximate analytical solutions of the undamped equations of
motion of a multi-degree-of-freedom system composed of three coupled non-linear oscil-
lators. For primary resonances and a harmonic excitation, general formulations were
presented which can be used to study the existence and the stability of the solutions as
well as modal spacing and modal coupling issues. These formulations provided an
analytical basis for future research in the areas of multi-degree-of-freedom systems with
multiple non-linearities) not necessarily just the clearance type) and the development of
experimental programs for model validation.

In addition to the analytical formulations, an analysis methodology for MDOF systems
was also presented and illustrated by two special but practical cases: a strongly non-linear
system and a weakly non-linear system. An analysis of the special cases of the general
MDOF non-linear formulation provided not only an improved understanding of the
dynamic behavior of the non-linear systems, but also formed the basis for the development
of simplified approximate solutions,

Because this represents an initial study, the scope of the work has been limited. Some
of these limitations which are currently being addressed by the authors are as follows.
First, an undamped formulation was chosen deliberately over a damped formulation in
an effort to simplify the mathematics so that general observations about the system
dynamic behavior could be made easily. Damping is easily added to the formulation, at
the expense of the complexity of the equations and the resulting solutions, using the
complex mass and stiffness concept in the frequency domain.

Second, this analysis was limited to the study of the response due to a harmonic
excitation. Although this type of excitation does not necessarily represent a realistic
operating environment it is, nonetheless, an important type of excitation and should be
considered for several reasons. First, in order to understand the response for more
complicated types of excitation, it is usually helpful and sometimes necessary to under-
stand the response to a very simple type of excitation first. More importantly, a harmonic
excitation is the preferred type of excitation for experimental studies of the general
characteristics of a non-linearity and for estimation of system parameters. Therefore, to
relate analytical and experimental studies, a clear understanding of the response for a
simple harmonic excitation is required.

Finally, for the MDOF analysis presented here it is assumed that the forced response
is given by the first harmonic only and not only are the higher harmonics neglected but
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also superharmonic, subharmonic, combination and internal resonances. For the special
cases considered in section 3, the single frequency approximation is probably valid because
the problem of combination and internal resonances is reduced by the requirement that
the non-linear and linear resonances be widely separated. This requirement also reduces
the possibility of superharmonic responses appearing in the operating frequency range
for case 2. For case 1, superharmonic and subharmonic resonances may occur for different
excitation levels as discussed by Comparin and Singh [28]. A more general analysis of
the MDOF non-linear system, including an analysis of modal coupling, will require a
consideration of the more complicated types of resonances as discussed by Gelb and
Vander Velde [29] and Nayfeh and Mook [30]. Although the analysis involved is beyond
the scope of this work the method of harmonic balance can be extended to treat these
cases and is the subject of a current research effort.
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APPENDIX: LIST OF SYMBOLS

b break points for stages in a general clearance non-linearity

Ffy general non-linear function

F force

K general stiffness term

M mass

Npy describing function for mean component

N, describing function for alternating component

time

a stiffness ratio

@, . average stiffness of first and second stage of non-linearity

5, 8,8 relative displacement, velocity and acceleration

) phase angle

I generalized argument of describing function

¢ generalized phase angle (¢ = f2t+ ¢)

w angular frequency (rad/s)

w,, natural frequency (rad/s)

N angular frequency of external excitation (rad/s)

2, stiffness coefficient for multi-degree-of-freedom case

=
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Subscripts

F, excitation force

m mean

P aiternating component

s single-sided

ts two-sided

Superscripts

(:_) first derivative with respect to time

() second derivative with respect to time
{5) non-dimensional variable



