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The feasibility of calculating the narrow band harmonic response of thin plates and
beams by using the method of images or the ray tracing technique is examined. The
fundamental solution of an infinite plate is employed, in conjunction with appropriately
placed images, to obtain the dynamic compliance spectra of simply supported rectangular
plates over a wide range of frequencies. Predictions yielded by the method of images are in
excellent agreement with the normal mode expansion technique. Simply supported beams
are analyzed first by considering the fundamental solution of an infinite beam, and second
as a case of a narrow plate with simply supported and roller boundary conditions. Both
approaches match well with the closed form solutions and with measurements conducted on
two beams. Several issues including convergence characteristics and high frequency behavior
are discussed.
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1. INTRODUCTION

Themethodof images or ray tracing techniques have been commonly employed in disciplines
such as acoustics, optics and electro-magnetics [1, 2]. However, this method has not been
adequately extended to structural vibrations. The only exception seems to be the work on
the regions of enhanced responses on strings or thin plates when excited by random loads
[3–7]. For instance, Crandall et al. [3–5] and Lee [6] have obtained the frequency response
of a finite string when excited by a point load whose time history was a wide-band random
process. Their image sum method was further extended to calculate the zones of intensified
response on a simply supported rectangular plate that was excited by random point forces.
Langley and Taylor [7] have analyzed the same problems by using the reverberant field
method. Cremer and Heckl [8] have presented a wave cycle closure principle but it has been
applied to satisfy the boundary conditions in the thickness direction of a plate. To the best
of our knowledge, no other researcher has attempted to calculate the narrow-band harmonic
response of thin plates and beams using the method of images. This paper attempts to fill
this void.

As a second motivation for our work, we consider the issue of narrow-band harmonic
analysis at very high frequencies. We drew inspiration from work in optics and electro-
magnetics [2] where researchers routinely work in the regime of wavelengths which are
orders of magnitude smaller than the geometrical dimensions of the zone of interest.
Consequently, the intent of the work described in this paper is to examine if the use of ray
tracing as an underlying mathematical model can conceptually lead to numerical methods
capable of predicting narrow-band behavior at very high frequencies which are robust,
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accurate and efficient. Only simple geometries with a few classical boundary conditions are
considered.

2. PROBLEM FORMULATION

2.1.  

Let V−, V+, 1V be the interior domain, exterior domain and the boundary of the plate,
respectively. Assume the boundary 1V is sufficiently smooth. According to classical theory
[9], the equation governing the flexural vibration of an isotropic, homogeneous plate of
constant thickness h is expressed in terms of transverse displacement w as

D94w(r� 0, t)+rh
12w(r� 0, t)

1t2 =p(r� s , t), (1)

where D=Eh3/12(1−n2) is the flexural rigidity of the plate; further, 94, t, E, r, p and n are
the biharmonic operator, time, Young’s modulus of the material of the plate, density, lateral
force per unit area and the Poisson ratio, respectively. Source and observation (response)
points are given by position vectors r� s and r� 0, respectively, both within V−. At a regular point
on the boundary 1V, bending moment Mn (w), twisting moment Mt (w) and shear force
Vn (w) are given as follows, where a is the angle from the x-axis to the outer normal and d/dn,
d/ds denote the normal and tangential derivatives, respectively, on 1V. (Definitions of the
symbols used in this paper are given in Appendix A)

Mn (w)=
D
2 6−(1+n)92w+(1−n) $012w

1y2−
12w
1x21 cos 2a−2

12w
1x 1y

sin 2a%7, (2)

Mt (w)=−
D(1−n)

2 6012w
1y2−

12w
1x21 sin 2a+2

12w
1x 1y

cos 2a7, (3)

Vn (w)=−D
d
dn

(92w)+
d
ds

Mt (w). (4)

Assume harmonic excitation at a circular frequency v,

p(r� s , t)=F(r� s ) exp(ivt). (5)

The resulting steady state response w is given by

w(r� 0, t)=u(r� 0) exp(iwt). (6)

Substituting equation (6) in equation (1), the governing equation can be expressed in terms
of the frequency parameter l as follows. From this point on, only the spectral domain is
considered in terms of u(r� 0) and F(r� s ):

(94−l4)u(r� 0)=
F(r� s )
D

, l4=rhv2/D. (7)

To solve the plate vibration problem, the biharmonic equation has to be solved subject
to various boundary conditions on the plate edge. In this paper, the discussion is limited
to rectangular plates with simply supported or roller boundary conditions. Structural
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damping behavior will be considered by replacing D with D� =D(1+ih), where h is the
loss factor.

2.2.  

The following fundamental solution U(r� 0, r� s , l) to equation (7) represents the transverse
deflection of an infinite plate at a point r� 0 due to a unit concentrated load at a point r� s of
frequency v [10]:

U(r� 0, r� s , l)=−
i

8l2D
[H1

0 (lr)−H1
0 (ilr)], (8)

where r==r� 0−r� s = is the distance between the source point and the observation point and H1
0

is the zero order Hankel function of the first kind. It has been used by Niwa et al.
[11] to develop a boundary element formulation for bending vibrations of plates. This
fundamental solution satisfies the Sommerfeld radiation condition, which implies that only
the waves travelling away from the source are considered [12].

2.3. - 

The fundamental solution given by equation (8) is based on the assumption that the plate
is infinite. To apply this to a finite plate, the boundary conditions on the plate edge have
to be satisfied. The method of images is essentially a scheme for satisfying the boundary
conditions for a finite plate.

Let us obtain the solution for a semi-infinite plate subjected to a point force F at
point rs (xs , ys ), as shown in Figure 1. Along the edge of the plate, boundary conditions are
satisfied by placing a fictitious point force F' at a distance ys from the edge which is equal
to the distance of F from the edge of the plate. Depending on the magnitude of F', certain
boundary conditions can be satisfied along the edge of the plate. Let ra (x, 0) be any point
on the edge of the semi-infinite plate in accordance with Figure 1. The co-ordinates of the
source and image points are rs (xs , ys ) and ri (xi , yi ). Since these points are mirror images of
each other about the edge line (y=0), xs=xi and yi=−ys . The distances of the source and
image locations from ra are rsa and ria , respectively:

rsa=ria=r=z(x−xs )2+(ys )2=z(x−xi )2+(yi )2. (9)

Figure 1. Imaging for semi-infinite plate.
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The deflection u, normal slope u, shear force Fy and the bending moment My at ra can
be obtained as the sum of the contributions from the source and the image. These are
given by

u=−
i(F+F')

8l2D
{[H1

0 (lr)−H1
0 (ilr)]}, (10)

u=
(F'−F)iys

8l2Dr
1

1r
[H1

0 (lr)−H1
0 (ilr)], (11)

Qy=
iys (F'−F)

8l2 9201r 1

1r
[H1

0 (lr)−H1
0 (ilr)]1, (12)

My=
(F+F')

8l2 6601r−y2
s

r31+n01r−x2

r317 1

1r
+0y2

s

r2+n
x2

r21 12

1r27[H1
0 (lr)−H1

0 (ilr)]. (13)

If F'=−F, the deflection and bending moment along the edge become zero
simultaneously, as equations (10) and (13) clearly indicate. This is nothing but the simply
supported boundary condition along the edge. If F'=F, the plate will have the zero normal
slope and the zero shear force along the edge as shown by equations (11) and (12). This is
the second type of boundary condition, the roller boundary condition which can be realized
by using the imaging technique. The free-free and clamped boundary conditions along the
plate edge cannot be achieved by using simple image sources alone. For these boundary
conditions, according to Chen [13], ‘‘the reflected wave has a local near field response which
contains waves propagating along the edge of plate and evanescent in orthogonal
directions’’. This type of behavior cannot be simulated by the point image source,
irrespective of its strength. This edge wave is localized within a zone near the edge that
becomes narrower as the frequency increases. So, at high frequencies, the free-free boundary
condition may be approximated by the roller boundary condition (as demonstrated by
the narrow beam example in section 4) and the clamped boundary condition may be
approximated by the simply supported boundary condition [13].

3. APPLICATION TO A SIMPLY SUPPORTED RECTANGULAR PLATE

3.1.  

Next, the results obtained for a semi-infinite plate are extended to a finite rectangular plate.
In Figure 2, the four edges of the plate are denoted by E1, E2, E3 and E4, respectively.
A ‘+’ sign indicates a positive image and a ‘0’ symbol represents a negative image.
The strength of all the image sources is equal in magnitude to the applied force amplitude
F. This configuration of source and images tends to satisfy the simply supported boundary
conditions on the edges of the plate. To see how this is being done, consider the edge E2.
The row of images R5 is the mirror image of R6. This is analogous to the case of the
semi-infinite plate which has equal and opposite forces at the same distance on either
side of the edge, to achieve the simply supported boundary condition. Therefore, their
contributions to the deflection and bending moment along E2 get cancelled. The same is the
case with R4 and R7. The only row of images which contributes to the deflection along E2
is R1. Similarly, R9 contributes to deflection on edge E4, V1 on edge E3 and V9 on edge
E1. As more reflections are taken into account, the distance of the rows/columns
contributing to displacement and bending moment from the corresponding edges increases



   795

Figure 2. Infinite plate with positive (+) and negative (0) sources equivalent to simply supported plate with edges
E1, E2, E3 and E4 excited at (xs , ys ).

and the contribution decreases. In the limit, the boundary conditions on all the edges of the
plate will be simply supported.

3.2.   

For a concentrated harmonic load of amplitude F at the point r� s (xs , ys ), the steady state
deflection at r� 0(x, y) is known exactly from the conventional modal analysis technique as

u(x, y)= s
a

m=1

s
a

n=1

Bmn sin (mpx/a) sin (npy/b), (14)

where

Bmn=

4F sin 0mpxs

a 1 sin 0npys

b 1
{ab[D�((mp/a)2+(np/b)2)2−rhv2]}

, D�=D(1+ih). (15)

Consider a rectangular steel plate example with simple supports on all four edges. The
dimensions of the example plate considered are length a=0·5842 m along x, width
b=0·7366 m along y and a thickness h of 0·762 mm. The loss factor for structural damping
h is taken to be 0·03.

In Figure 3, the real (Re) and imaginary (Im) parts of the dynamic compliance
C(v)=(u/F)(v) are plotted as a function of x/a along y/b=0·34, when the load is applied
at r� s (0·65a, 0·51b); the origin (0, 0) is at the bottom left corner of the plate. The frequency
of excitation is f=v/2p=100 Hz. The number of reflections (k) considered for the method
of images is 40. There is an excellent agreement between the solutions obtained from both
methods.

The cross-point dynamic compliance spectrum given r� s at (0·65a, 0·51b) at r� 0 at
(0·91a, 0·96b) is plotted in Figure 4. The results from modal analysis and method of images
with (k=40) are identical.
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Figure 3. Dynamic compliance along the line y/b=0·34 due to unit force at (0·65a, 0·51b). ×, Modal analysis;
——, method of images.

3.3.     

Two error estimates e1 and e2 are defined as follows:

e1=cs
g

(uk−um )(uk−um )

s
g

(um )(um )
, e2=c s

bg

ukuk

s
bg

uk0uk0

, (16, 17)

where the subscript g represents any grid point and the subscript bg denotes a grid point
on the plate boundary, uk0 is the deflection due to the source alone, uk is the deflection due
to the source and images after k reflections, um is the exact solution for deflection obtained
from modal analysis and the overbar implies complex conjugation. Therefore, e1 is a measure
of the deviation of the approximate solution obtained by the method of images from the
exact solution and e2 is a measure of convergence of the boundary conditions that must be
satisfied. As the number of reflections (k) increases, if e1 and e2 approach zero, the solution
obtained due to the method of images converges to the exact solution.

The loss factor h was reduced by an order of magnitude from 0·03 to 0·003 to study the
effect of damping on the convergence rate of the solution. It was observed that a higher
number of reflections is required for an accurate solution at the lower values of damping.
This is evident from Figure 5 where the dynamic compliance variation along the line
x/a=0·87 is plotted given a unit concentrated force at (0·65a, 0·51b). The frequency of
excitation is again 100 Hz. From this figure and other results, though not reported here,
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Figure 4. Dynamic compliance spectra between (0·91a, 0·96b) and (0·65a, 0·51b). ×, Modal analysis; ——,
method of images.

it is clear that one must choose the k judiciously by considering various factors such as h

and the frequency range of interest.

3.4. 

The expression for the response at r� 0 due to a point load excitation at r� s obtained from
modal superposition is given by equations (14) and (15). If we interchange the co-ordinates
of the observation and the excitation locations, i.e. (x, y) and (xs , ys ), we still obtain the same
expression for the displacement. Hence, as expected, the reciprocity relationship holds.
Similarly, the method of images also obeys reciprocity. But it is not transparent from
the way the solution is obtained. If the source and the observation points are interchanged,
the set of image locations obtained is completely different. It is interesting to find two entirely
different series of Hankel functions add up to the same dynamic response. For the
plate example chosen with v=100 Hz, h=0·03 and k=50, the results obtained by
interchanging the source and the observation points are identical to nine decimal places as
evident from Table 1.

3.5.  

For the same example, consider the load F(r� s ) to be distributed over the surface of the
plate. Assume it to be given by F(x, ys )=Fx/a. For the method of images, the distributed
force is replaced by an equivalent set of concentrated loads. The solution obtained is
compared with the exact solution obtained from modal superposition which is still given by
equation (14). But now

Bmn=
4F(−1)m+1 sin(npys /b)

{bmp[D�((mp/a)2+(np/b)2)2−rhv2]}
. (18)
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Figure 5. Dynamic compliance along x/a=0·87 due to unit force at (0·65a, 0·51b). Loss factor h is 0·003. ×,
modal analysis; . . . , method of images with 100 reflections; – · – · –, method of images with 200 reflections;
——, method of images with 400 reflections.

For the imaging technique, if the number of point loads is q, the strength of each source
is given as

F( j)=
F0( j−1)a
q(q−1)

, j=1 · · · q. (19)

The sum of all the point harmonic loads is

s
q

j=1

F( j)=F0a/2, (20)

which is equal to the total force exerted by the distributed ramp load F(r� s ).
Figure 6 presents plots of the forced harmonic response at 100 Hz due to a ramped load

of F=100 N/m, given ys=0·69b. The response is measured along the line x/a=0·87. The
number of reflections considered for the method of images is 40. For the method of images,
this distributed load is replaced by 100 point loads. Again, the results from the method
of images and modal analysis match very well.
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Figure 6. Real part of dynamic compliance along x/a=0·87 due to a ramp load of F=100 N/m along y/b=0·68.
×, Modal analysis; ——, method of images.

4. APPLICATION TO SIMPLY SUPPORTED BEAMS

4.1.  :   

The configuration of images shown in Figure 7 satisfies the roller boundary conditions
on all the edges of the plate, i.e. along all the plate edges, the normal slope and shear force

Figure 7. Infinite plate with source and image sources equivalent to a finite plate with roller boundary condition
on all edges. Key as figure 2.
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Figure 8. Edges E1 and E3 are simply supported and roller boundary conditions are satisfied along edges E2
and E4. Key as figure 2.

vanish. By choosing proper directions for the image sources, different boundary conditions
can be obtained along each edge. Figure 8 shows an example where edges E1 and E3 are
simply supported and edges E2 and E4 have roller boundary condition. This example is used
to model a simply supported slender beam when b/aW1. As in the case of a plate, we assume

Figure 9. Dynamic compliance due to a unit concentrated load at x/a=0·6. Beam A modelled as a narrow plate.
×, Modal analysis; . . . , method of images with 100 reflections; ——, method of images with 400 reflections.
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Figure 10.Acclerance spectra between 0·875a and 0·697a for beamB. – – –,method of images;×,modal analysis;
r, experiment.

the beam to be lightly damped. The Poisson ratio n is taken to be zero since the governing
equation for transverse vibrations of a beam assumes no variation in deflection along the
y-direction.

A steel beam of a=0·381 m, b=0·0381 m and h=4·762 mm, designated here as beam A,
is considered. The loss factor h is 0·03. The dynamic compliance along the length of the beam
due to a unit concentrated load at x/a=0·6 is plotted in Figure 9. The frequency of excitation
is 1000 Hz. From the figure, it is observed that the solution from the method of images for
a plate with mixed boundary conditions converges to the exact beam solution as k increases.
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4.2.  :   

The governing equation for the transverse vibration of a beam is given in terms of
displacement as

12

1x2 0EI
12w
1x21+rS

12w
1t2 =p(x, t). (21)

If structural damping is taken into account, E in equation (21) can be replaced by E(1+ih).
For the classical viscous damping case, the governing differential equation becomes

12

1x2 0EI
12w
1x21+c

1w
1t

+rS
12w
1t2 =p(x, t). (22)

The following derivation of the beam fundamental solution is from Graff [14], but it has been
modified to account for structural or viscous damping. Consider an infinite beam subjected
to a harmonically varying, unit concentrated load placed at x=xs . As in the case of a
plate, the frequency parameter is given by l4=rSv2/EI(1+ih) for structural damping
and l4=(rSv2−icv)/EI for viscous damping. The four values of l are

l=g−ib, b+ig, −g+ib, −b−ig. (23)

The fundamental solution for the infinite beam is given as

U(x)=
i

E(1+ih)I 6 1
4(g−ib)3 exp(−i(g−ib)(x−xs ))

+
1

4(−b−ig)3 exp(−i(−b−ig)(x−xs ))7, xqxs , (24)

U(x)=
i

E(1+ih)I 6 1
4(b+ig)3 exp(−i(b+ig)(x−xs ))

+
1

4(−g+ib)3 exp(−i(−g+ib)(x−xs ))7; xQxs . (25)

As in the case of a plate, a simply supported condition is obtained when the strength of the
image force is equal and opposite to that of the applied force F. For a concentrated harmonic
load F at the point r� s (xs ), the exact solution for deflection at the point r� 0(x) is given from
modal superposition as

u(x)= s
a

m=1

Bm sin (mpx/a), (26)

where

Bm=
2F sin(mpxs /a)

a[E(1+ih)I(mp/a)4−rSv2]
. (27)
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T 1

Reciprocity check for the plate example at 100 Hz

r� 0 r� s Re(C)mm/N Im(C)mm/N

(0·43a, 0·34b) (0·78a, 0·76b) −3·6678014934800393E-02 1·7432166043526748E-02
(0·78a, 0·76b) (0·43a, 0·34b) −3.6678014934799825E-02 1·7432166043526624E-02

An aluminum beam of a=0·508 m, b=0·102 m and h=6·35 mm, designated here as beam
B, is considered. The accelerance spectrum between the points 0·875a and 0·697a is obtained
from experiment. The viscous damping coefficient for modal analysis and the method of
images is calculated in such away that the first resonance peakmatcheswith the experimental
results.Here, c is taken to be 9 Ns/m2. The critical damping, cc1, for the firstmode for a simply
supported beam is given as cc1=2p2zEIrS/a2. cc1 for this beam is found to be 1225·13 Ns/m2.
the damping ratio z for this particular value of damping coefficient is z=c/cc1=0·00717.
Figure 10 represents the accelerance spectra between the points 0·875a and 0·697a. The
frequency range is 5–400 Hz. It can be observed from Figure 10 that the results from the
method of images match well with experimental and analytical modal analyses.

Even though both approaches yield the same response, the advantages of using the beam
fundamental solution over the plate fundamental solutions are as follows. First, the problem
becomes one-dimensional and its solution can be obtained much faster. Second, beams of
arbitrary cross-section can be studied. If the beam is modelled as a narrow plate, we are
restricted to plates of rectangular cross-section.

4.3. 

The forced harmonic response data as calculated by the method of images can be used
to find natural frequencies vr and mode shapes by using the coincident-quadrature technique
commonly employed in experimental modal testing. For the sake of illustration, the two
beams corresponding to the results described in sections 4.1. and 4.2. were analyzed. Natural
frequencies predicted by the method of images exactly match with the measured data in
Table 2. An attempt was made to simulate the simply supported boundary condition in the
experiment, but only the first few modes can be realized.

5. BEHAVIOR AT HIGH FREQUENCY

At low frequency, the modes and the corresponding natural frequencies of structures are
easily computed using the finite element method (FEM) and then the response using the
normal mode expansion technique. At higher frequencies, the modal count increases

T 2

Natural frequencies of beam A and beam B

Beam A Beam B
Modal index ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

m Experiment method of images Experiment method of images

1 77 77 59 59
2 304 304 230 230
3 688 688 — 545
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Figure 11. Accelerance spectra between (0·74a, 0·66b) and (0·30a, 0·38b).×, Modal analysis; ——, method
of images with five reflections.

significantly. Furthermore, to obtain accurate results, the finite element dimensions should
be smaller than the wavelength of elastic waves at these frequencies. Thus, a very large finite
element model is required which is not always practical or justifiable in terms of the
computational expense involved and accuracy obtained. In contrast, the statistical energy
analysis (SEA) method is more suitable at very high frequencies, but only spatially averaged
band limited information is obtained. This approach also involves several simplifying
assumptions and modelling criteria which are still being debated [15–17]. Asymptotic modal
analysis has also been proposed as a viable analysis approach [17].

Using the method of images, we have observed that fewer reflections are needed to
obtain the same accuracy at higher frequencies. In other words, for the same number of
reflections, the accuracy increases with frequency. This behavior is a departure from that
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Figure 12. Accelerance spectra between (0·74a, 0·66b) and (0·30a, 0·38b). ×, Modal analysis; ——, method
of images with five reflections; r, FEM.

of the conventional methods such as the FEM whose accuracy reduces at higher frequencies.
For the sake of illustration, again consider the rectangular plate example with simply
supported boundary conditions, under a point harmonic load F at r� s (0·03a, 0·38b). The
response point is fixed at r� o (0·74a, 0·66b) for all the calculations. For our method of images,
the solution is calculated using only k=5 reflections, i.e. the deflection at any point is
obtained by simply adding the contributions due to (2×5+1)2=121 sources. A finite
element model is constructed using 400 elastic shell elements [18]. Both predictions are
compared with the exact modal analysis solutions over almost four decades of frequency
from 1–10000 Hz. Over this range of frequencies, the natural frequencies are distributed
as follows: 13 modes in the frequency range 0–100 Hz, 151 modes over 100–1000 Hz and
1595 modes over 1000–10 000 Hz. Two arbitrary frequency ranges, first at the low end from
5 to 2000 Hz and the second at the high end from 9000 to 9100 Hz are selected to compare
the results. Given the wide range of frequencies, it is appropriate to choose the accelerance
A(w)=−uv2/F as the sinusoidal transfer function in place of C(w), where −uv2 is the
transverse acceleration of the plate.

Figure 11 shows the typical frequency response curves from 5 to 2000 Hz. In
Figure 11, only the method of images is compared to the exact solution. Both are almost
indistinguishable. Figure 12 shows the typical comparison at very high frequencies where
400 spectral points are distributed over 9000 to 9100 Hz. The method of images is again in
excellent agreement with the exact solution but FEM fails to predict the response. Further,
no clear cut resonances are seen. This is because high modal damping values are observed
given a frequency-invariant loss factor of 0·03. It suggests that the asymptotic modal analysis
or SEA type methods [15–17] might be suitable to predict this type of response. However,

Figure 13. Convergence estimate e1 versus frequency. —W—, Method of images with five reflections; – –r– –,
FEM with 400 elements.
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no a priori assumptions or procedures are needed in our method to find the band limited
responses.

To better understand these results, the convergence estimate e1 as given by equation (16)
is plotted in Figure 13 for both methods with the exact modal solution as the benchmark.
Even though either method could be made to yield improved behavior, if more reflections
are chosen for the method of images or by decreasing the element size in FEM, certain trends
are obvious. First, the FEM predictions are based on the eigensolutions which are prone
to errors at the higher frequencies. Second, the method of images seems to improve its
prediction capability as the frequency is increased. It is believed to be related to the image
placement distance which depends on dimensions of the plate in relation to the elastic
wavelength which becomes much smaller at higher frequencies. Finally, both methods show
opposite trends over the spectral scale.

6. CONCLUSIONS

A new method of images has been developed for the harmonic analysis of plate and beam
vibrations. Even though only a limited number of illustrative examples have been considered
to verify the proposed procedure, certain observations can be made. Unlike the finite element
method and other modal band methods, the solution accuracy of the method of images
increases with an increase in the frequency and damping. Also, one can choose to analyze
the response at just one location, unlike FEM where the solution has to be obtained at all
the nodes. This procedure is in contrast to the modal methods where all the modes must
be known a priori before the harmonic response can be calculated. The method of images
seems very promising as a potential analysis tool because of its computational efficiency and
accuracy in the medium and high frequency regimes. Work is proceeding along these
directions and complicated plate shapes are being examined. However, more research is
needed before it can be applied to practical structures and machines.
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APPENDIX A: LIST OF SYMBOLS

a length
A dynamic accelerance
Bmn contribution to the displacement from m, n mode
b width
c coefficient of viscous damping
C dynamic compliance
cc1 critical damping coefficient for the first mode
D flexural rigidity of the plate
D� complex flexural rigidity
e1, e2 convergence estimates
E Young’s modulus
f frequency (Hz)
F strength of the source
F' strength of the image
h thickness
H1

0 zero order Hankel function of the first kind
i imaginary unit
I area moment of inertia
Im imaginary part of a complex quantity
k number of reflections
m, n modal indices
Mn bending moment
Mt twisting moment
My bending moment along the edge
p applied external force
Qy transverse shear force along the edge
q number of point loads replacing the distributed force
ra a point on the edge of the semi-infinite plate
r� o (x, y) position vector of the response point
r� s (xs , ys ) position vector of the excitation point
rsa distance between the source and observation points
ria distance between the image and observation points
Re real part of a complex quantity
S cross-sectional area
t time
u displacement amplitude
uk deflection amplitude from method of Images
uk0 deflection amplitude due to a single source alone
um deflection amplitude from modal summation method
U fundamental solution for an infinite plate or beam
Vn shear force
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w transverse displacement
x, y co-ordinates axes
a angle between the x-axis and the outer normal
d Dirac delta function
1V boundary of the domain
h loss factor for structural damping
l frequency parameter
92 Laplacian operator
94 biharmonic operator
n Poisson ratio
v angular frequency
V− interior of the domain
V+ exterior of the domain
r density
u normal slope

Superscripts
− complex conjugate
: vector

Subscripts
bg boundary grid point on convergence grid
g grid point on the convergence grid


