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model of a noise control problem,

i.e., source, path (joint), and receiver. Both methods place emphasis on the joint properties and

heeount for different paths and mechan

isms of noise transmission (e.g., forces and moments). Only

the discrete system formulation is considered and results obtained via exact (unsynthesized) and the

proposed component synthesis procedures
found to be useful for distingnishing which

perfectly match with each other.
path (joint) transmits power and the complementary

The mobility method is

modal method yields information on the newly defined modal dissipation efficiencies. Finally the

issues of scalar versus vectorjoints an

d rigid versus compliant connections are addressed by using

a pedagogical example of a 10 degrees-of-freedom system.

PACS numbers: 43.40.Hb

INTRODUCTION
A. Motivation

Machines and equipment ate often buill-up assemblies
of many components and subassemblies joined together via
balts, rivets, gaskets, or welded connections. The dynamics
of the assembled system is often affected by the compliance
and damping of the joints or connections.™? Nonetheless,
prior modeling effortsi® in the calculation of either modal
solutions or vibratory power flows have assumed the joints to
be either rigid or scalar springs. In some cases,’ the analysis
is terminated at the joint as if it were assumed to be a bound-
ary condition {fixed, free, or simply supported). Since the
literature in this area is rather sparse, a definite need exists to
establish a mathematical framework for inciuding joints in a
systematic manner for the calculation of modal data, transfer
functions, and vibratory power flows. While many joints and
machine elements are inherently nonlinear, only linear time-
invariant characteristics over the lower frequency regime are
considered here as a logical first step.

Yet another important research issue is the dimension of
the joint, An example of this is the situation in which both
the force and moment transmissions through a joint are
:r,igl'liliir:arlt.““8 Although moment paths may be negligible at
lower frequencies,”” some studies suggest otherwise." For
the sake of simplifying formulations, several prior studies
have used scalar connections,’ but for realistic joints, vector
transmission paths must be considered; that is the focus of
this study. Intended applications of the theory presented in
this article include sheet metal structures with joints and ro-
tating machines where bearings may be thought of as joints
from the standpoint of vibration transmission phenomeﬁon.
numerical and

«  Given the complexity of real-life problems,
experimental methods must often be employed, and therefore
a discretized system model or database is assumed to be
available.
011
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B. Objectives

Several existing narrow-band analysis methods :
the form of component synthesis procedures, thereby
ing better examination of the consequences of design
fications to a particular substructure or component. M
these procedures either synthesize components in the
domain® or the frequency domain.>®!*"'* Since none
existing methods is believed to be fully capable of a
ing the issues associated with multidimensional cor
joints, we extend and refine two established narros
analysis procedures. One method is based on a mobil
proach similar to those in Refs. 5, 6, 12, and 13. The ¢
based on a modal synthesis approach such as
method,'® where proportional damping is assumed st
all the modes are real-valued. In our study, the ass
structure is decomposed into three key components
form of a classical noise contro! problem, as shown
1(a). The source structure {s) contains the origin
narrow-band vibrational energy (excitation), and is !
active component. The next component Tepresents tr
Jess, nonconservative, and nonrigid connections or J¢
which may be multidimensional and connect the a
structures at several discrete locations. From the j
power is then transmitted to the passive receiver
{c), which for the sake of convenience can be furthe
posed into free receiver (a) and foundation (b) com
Often the foundation component may be modeled
eralized termination impedancc” or energy sink.

I. ANALYTICAL FORMULATION
A. Mobility approach

to the electrical ‘‘black box’
proccdures,ls'w this approach is not concerned W'
ternal behavior of the components. Rather it onl
the interfacial structutal mobilities Y, forces F, a

Similar
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FIG. 1. Schematic of the proposed method. (a) General component notation.
(b} Notation for mobility approach. (c) Noetation for modai approach.

ties v as shown in Fig. 1(b). Here bold symbols denote ma-
trices or vectors of dimension #, since we are interested in
vector rather than scalar paths. In our analysis, the mobility
matrix assumes free—free boundary conditions on each com-
ponent. When studying multiple connections with mobility
dpproaches, many investigators have neglected the transfer
mobilities to simplify the problem.”™*' Such an approxima-
tion: serves to uncouple the joint locations so that only point
hobilities may be used, but it is not really applicable at the
lower frequencies in which we are particularly interested.
Pons—:quently the full component mobility matrices includ-
Ing transfer mobilities are retained in this study. For the
larrow-band analysis, we first define the following equations
" the frequency domain (w), with reference to Fig. 1{b):

where I is the identity matrix and the superscripts 11, 12, 21,
and 22 denote the submatrices for the input (1) and output
(2) ports/interfaces of a component. Furthermore, v, is the
velocity vector at the excitation (¢) interface of dimension
n,, ¥y, is that of the source (s)—joint (p) interface of dimen-
sion 51, ¥,,, is that of the joint (p)-free receiver (a) interface
also of dimension n, and v,, is that of the free receiver
{a}-foundation (b) interface of dimension n, ; the interfacial
force vectors are defined analogously. We should point out
that the method is generic enough to accept a1, uncorrelated
excitations, but we will only consider a single excitation in
this study for the sake of clarity. Consequently, ¥, is of di-
mension #,+1,, Y, is of dimension n,+n,, Y, is of dimen-
sion n,, and Y, is of dimensicn n, . The joints are consid-
ered massless, and are therefore only characterized by their
stiffness, K, and damping , C,,, matrices which are of di-
mension 7, and are assumed symmetric for the sake of con-
venience. Our assumptions of massless and discrete joints
are valid for lower frequencies, and are consistent with the
specification of a narrow-band approach such as the
mobility/receptance metheds.>*'>!* Note that to avoid using
a singular mobility matrix of dimension 2np in Eq. {1c), the
joints’ equations are posed in the form of a transfer matrix
with a nonsingular Yp=£w{Kp+ipr)'l of dimension n,,.
Couplings between degrees of freedom are permitted by
these general connections; each joint may be represented by
a 6 X6 matrix (which may then be reduced further in dimen-
sion depending on symmetries and type of joint). Rearrang-
ing the equations in {[) by equating the velocities, and uti-
lizing the fact that the massless joint has the same force

magnitude at its input and output, ie., F,=F,,=F,, yields
the following matrix form:
Y () + Y @)+ Y, ~YHw) F,(w)
-Y Y w) Y w)+ Yy(w) || Fap(w)
Y, '(w)
= 0 Flw), (2)

which we wish 1o solve for the interfacial forces, F, and F, .
The inversior of the matrix can be done in terms of the
submatrices;'” this is desirable to economize the method
since all operations are then performed on the smaller com-
ponent matrices thereby eliminating the need to numerically
assemble them, This process results in the following equa-
tion:

I F,(w) ]J I(w)

Fop(w) [Fl(w}rz(w} Flw), (3a)

where the intermediate matrices are given by

viw)] [Yi(e) YHw)|| Flo)
(@) T Y (0) Y| -Fw] 13 Iy(@)= (Y22 (@) + Yy(@)) ¥ w), (3b)
P P
Vpa(w)]z'Y;I(w} Y},z(m}“ Fpu(w) ] (1b) Ty (@) =[(Y{w)+ Y (w0) + Y (o))
el ¥ @) Y@ -Falo)] Y (@)(w)]) 'Y (0) (3¢)
— 1, 1 s .
s 1Y, a
;pEZ;} “lo p;w) {:-p Ez;]’ (1c)  The previous equation may then be augmented with the ex-
¢ reqs wt i pe citation, F,, so that all the interfacial forces are now defined
; Yos(w) =Y (w)F,5(w), ad)  as

1d vey

rica 8 ﬁi 233 J. Acoust. Soc. Am., Vol. 97, No. 5, Pt. 1, May 1995 T. E. Rook and R. Singh: Power flow through joints 2883



’*

F.(w) I anb(wl=P:,b(w)fP:(w)=llF,(w)||%,‘,,mxl1F,(w)uf,‘(n,)."-.
F(w) =] Tie) (Flw). (4) gl
Fop(0)) [Ti(@T(e) - EL

Furthermore, the interfacial velocities may be obtained from
these interfacial forces through the following equation that

B. Modal approach

The modal synthesis procedure has been used previ
to calculate the power flow in structures, but only for

arises from rearranging Eq. (1);
. s 4 . D
11 _yt2 joints.” The modal approach proposed here is divided
v (@) Y, (@) 11 (@) :)2 two primary steps. The first of these, is to synthesize
Vpalw) p = 0 Yiiw) -V (@) velocity field of the assembly from the component m;
Vop( ) 0 0 Y, (@) properties. In this step, any boundary conditions on the sgf
assemblies may be used, e.g. fixed—fixed or fixed—freg:

Fw) though we opt to use free—free in the following derivatiy
X3 Fylw) ¢, (5) The second step is to treat the forced harmonic respons&d
Fap(w) the assembly as an externally applied velocity fieid and ,,_'

to project the corresponding portions of this field onto ¢ ¥

We now introduce an inner product (ll,“’)n=(Dll]HW and its  subassembly with no other external constraints (ie., o
corresponding norm luffy=(n,u)p which will allow us to free—free boundary conditions). The procedure is illustrale
compactly express the vibratory power flows, wheremand w by first writing separately the equations of motion of fi
are arbitrary complex vectors, D is any symmetric complex  free—free source (s) and receiver (c} structures of Fig. 1(a

valued matrix, and the superscript H denotes the Hermitian . . T
of a vector. Due to the symmetry of D, the norm posSesses M_{q_,(r)+quj(t)+qu_,(t] =L.F.(1). @
the fgllowing properties: Re(uld)=  lvliep) 2nd M., (1) + Ca. () + Kq(1)=0, (&
Im(juf3)=—lull 2, where Re( ) and Im( ) are the real an

where M, C, and K are the mass, damping, and stiffne

imaginary part operators, respectively. The expression for the A ) i . :
time-averaged transmitted power, P', is synthesized in the matrices, respecnvely, and q is the generalized displacem
frequency domain from the interfacial forces and velocities veclor. Add‘“o“f‘“y_ L, is a Boolean selection mattix wh
via (wa-rr)Ek_fﬁ"‘““'c}k(t)Fl(t)dt=§Re((v(w),F(w)),). For  extracts the excitation degrees-of-freedom from the sou
each interface the power transmission equations take the deg_fees")f'ffeﬁ’df)m such that F (a) is tl'fe. same vector h
form as in the mobility method. These quantities include all

relevant degrees-of-freedom (such as n, for the source,

PL(“’}S% Re{(ve(w).Fe(w));)=llFe(m)llE£(¢.,), {6a)  for the receiver) including those of the interior and ir
faces. Next we consider the modal decompositions of ¢

- - 2
P {w)=% RC{(vpa{w]'Fp(w»l}_llFe(w)qua(w)’ structure assuming that the system mass, damping, and s
(6b)  ness matrices are symmetric and using the following v
known modal orthogonality relations:
P!, ()= b Re((va( @) Fap(©))D = IFel @)lg 0 gonatly

{6¢) M D =1,
where the effective mobilities, Q, are as follows: oICd.=E,,
Qu(w)=4 Re(Y} ' ()= YiH(@)T2(@)), (64) @K B, = A,
Q,u{w)= § Re(TH(w) (Y, () M P =1,
~ Y3 (@) {w)lx(w)), (6¢) ®'C, 0. =E.,
Quy( @) =} Re((T{ @) To(0)*Y,(w) K D= A,
x (T {w0)T(w))}). (6f)  where ®, =, and A are the system eigenvector, dit
damping, and eigenvalue matrices, respectively; se

I;I}ote thfﬂ t}"le transmltt;d pow;rsharc 1::;ll c.[uadrans_lf_o‘rms of (c). Equation (9) may then be assembled in the part
:ic e?::n:non }\:ector,. e» AN ﬁt]l © il fhctwehmﬁ ilities, Q. §5rm as follows, where the subscript 2 denotes the sub:
escribe how the excitation is fillered through the SIUCIUTe. 1 in the modal domain:

They may also be expressed as quadratic forms of the free
source velocity'? by using the relation v, p(w)=Yfl(w]F,(w). ® - {‘D, 0\
F 3

Since design modifications change the input power as well as 0 D
the transmitted power it is more convenient to present the -
ratio of transmitted to input power as a comparison quantity. = ={=’s 0]
v These powet ratios may be written as =0 EJ
0ty @) = Pl @)/ P @) =IE 0/ TPl ) A =[A, 01
(7a) “l0 ALY
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(10d)

m{w)l
q.(w))’

qz(w)=l

Wwe now need to integrate the joint dynamics into this formu-
jation. Accordingly, the relative displacements across the

$ jints/paths are given by

8y(@)=L.q (@), (11a)

Lz=[Ls._L-:];

where the matrices L, and L. give the connectivities be-
ween the joint and the source and receiver, respectively, that
is, they extract the interfacial degrees of freedom from the
vector q, which contains all the degrees of freedom of the
assembly. To complete the assembly of the structure through
the compliant joints, the following matrices are defined in
the modal domain:

(11b)

A=AZ+(L:¢2)TKP( Lz¢z)s (123)

=Z,+(L,®,)’C,(L,®,) (12b)

along with its associated orthogonality relations: W ¥r=I;
¥ AW=A; W BW=E The cigenvalues A of A are indeed
the e¢igenvalues of the assembled structure and the corre-
sponding assembly modes, @, are given by ®=& W¥. This
formulation assumes that the joint is proportionally damped
such that both the component and assembly modes are real.
For the assembled structure subjected to harmonic excitation
of arbitrary amplitude F at frequency w, the modal superpo-
sition with the use of the synthesis relations (12) yields the
velocity response as

V(w)=iwd[A— o I+iwZS] 'O F(w)
=io®[A- o’I+iwB] '®/Flw), (13)

where F(w)={(L]F ()", 07} and v(w)={v]{w), v/(w)}.
This partitioning into the source v (w) and receiver compa-
nents. v (w) continues as follows:

Vilw)=iw® W W [A-w’l+iwB] '®Flw), (14a)
Vilw)=iwd ¥ ¥ [A- o’l+iwB] '® F(w), (14b)

Where W, are the rows of W corresponding to the receiver
degrees of freedom and W, are the rows of ¥ corresponding
10 the source degrees of freedom. From the assembly eigen-
Valu: problem we know that W W=WW =] and thus
Voul=1, w¥'=0, W, ¥ =0, and W . W =1 Utilizing
these identities in the modal superposition, we find the
Source velocity field to be given by

Vi{w)=iw®[L0fA— 0’ I+iwB] '® F(w). (15)

The matrix inversion can be performed in terms of
Submatrices!? as in (3). After exploiting the fact that only the
Surce is active, its velacity field may be stated as

F4( w)

Ty(@)y(w) P00 {6

"s(w)zmtb,[l,l}]{
S
Where the intermediate matrices are given by

5 . Acoust. Soc. Am., Vol, 97, No. 5, Pt. 1, May 1995

Fy{w)=[A — @' I+ieE +(LP) (K, +iwC,)
X(L®) ] (L®,) (K, +iwC,)(L.®,)],
(16b)
T(0)=[(A~ @’ I+iwE,+(L®,) (K, +iwC,)
X(Ly®,)) - (L®,) (K, +iwC,)
X(L )T 3(w)] (L@, (16c)

From above, it becomes apparent that although v, is used
which includes interior degrees-of-freedom, actually only the
interface and excitation coordinates of the eigenvectors are
needed, ie., L,®;, L/®,, and L ®, if the multiplications
with the Boolean matrices are done analytically. To pursue
the power flow calculations, we next utilize the fact that the
power dissipated in the entire structure equals the power in-
put under steady-state conditions.

Piw)=2 Pi(w)=Pi(w), (172)
4

P(w)=} Re({v(w),F(@))p=|F( @) (o)

k=s,p,c {17b)

R.(w)= 1o Im{(L.®,)(w)). (17¢)

The power dissipated in the source component is given as
follows by using (9) and (16):

P(w)= Yy (@) =IF ()} (o

R,(w)= 10’ Re(I'{(w)E,T,(w)).

(18a)

(18b)
Similarly for the receiver and joint, dissipated powers are

Pg(w]=%nvc{w)”éf:“Fe(w)nic(w)v (193)
Po(@)= LA g, =IF()lg (0, (19b)

R (@}=}w’ Re({T5( )y w)ME(F3(0) Tyl w))),

(19¢)
1 A I F-l(w) H T
Rp(w)= '2"&1'“ RC[ I-‘3(w)r|4(m} (qu)z) Cp(de)z}
Fa(w)
A M)y (w) ] 154

As with the mobility method, the power equations are qua-
dratic forms of the excitation. But now the power dissipated
in the receiving (and/or source) structure can be broken
down into its modal contributions

Plw)=2 P! (w), (20a)

Pi(0)={w)o6 (o)) (20b)

where P? (w} is the power dissipated by each mode of the
receiving structure, £, is the damping ratio of the rth mode,
w, is the natural frequency of the rth mode, and G, is the rth
element of the vector I';I'JF, . Similarly the power dissipated

T. E. Aook and R. Singh: Power flow through joints 2885



within the entire assembly (17) may be expressed in terms of
the assembly modes, @, as

PHw)=HV(o)E=F () ]kw

R(w) = 3w® Re(((A— 0 1+iwE) '@DHVE(A- 1

(21a)

+iwE) " '®N), {21b)

where @, is a matrix whose rows contain the excitation
degrees-of-freedom for each assembly mode. These equa-
tions permit us to calculate the following structural modal
dissipation efficiencies o{e) analogous to the modal radia-
tion efficiencies which are in common usage in the discipline

of acoustics.??
o5 (@) =P () Plw), re[l,ng, (22a)
oo (=P (@}/PUw), re[l,n], (22b)
opul@)=P8 (0} Piw), ke[l,n,], (22¢)
o, (0)=P? {0}/ Plw), re[ln]; (22d)

where n,=n,+n.. The rquation for the joint dissipation ef-
ficiency (22c) is not truly a modal efficiency (since the mass-
less joint has no modes), rather it is the efficiency of the
various joint paths to dissipate power.

C. Relationshlp between mobility and modal
approaches

Whereas with the mobility approach the emphasis was
on the transmitted power, P’, between components, with the
madal approach the emphasis is on the dissipated power, P,
in each component. Therefore, unlike the mobility approach,
the modal approach requires detailed information about the
internal dynamics of a structure and hence it is much larger
in dimension. The two methods are otherwise related by the
power balance equation P*{w)=P1 {w)— P.,(w) which states
that the difference between the power transmitted into,
P! {w), and out of a structure, Py, (w), equals the power dis-
sipated in that structure at any e under the steady-state con-
ditions.

Furthermore, the two proposed methods are complemen-
tary in nature. The mobility method is particularly suited to
the efforts of reducing the power which is transmitted by the
joints/paths (as if they were treated as isolators); this is
analogous to trying to achieve as high of a mobility (or im-
pedance)} mismatch as possible. However, since not all joints
lend themselves to be ideal isolators, inevitably some power
will leak into the receiver to be dissipated therein. Investi-
gating how this power is dissipated within the receiver is the
strength of the modal approach. Therefore the two methods
in conjunction with one another may be used to study the
noise control problem of which paths transmit the most
power to the receiver and which modes of the receiver most
effectively dissipate that power.

One of the benefits of the mobility approach is the vari-
ety of methods by which the structural mobilities can be
obtained. For instance, the appropriate elements of the equa-
Hion

Y™ (w)=iw[ (K- o*M+ieC) !]™ (23)
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may be used where the superscript ma refers to the ele" :
(m,n) of the matrix; it is this procedure which is uséff-

elements set to zero, since the joints are considered m
less). The modal decomposition of this equation may alsg
utilized which takes on the following form:

er,m ¢r,u

—w?)+ iw(2f,w,)’

Y™ (w)=iw o

experimental,'* or finite element procedures. Note that |
assumes proportional damping for the structure. '

Il. RESULTS 1

A. Discrete system example i

To illustrate the propesed methods, a principal exa&};
of Fig. 2 is chosen since exact results for a subset of i
configuration have appeared in the literature.* This syste
of dimension 5n, where n may be chosen arbitrarily, inc(
porates many of the features which we intend to exani
with our methods, e.g., multiple compliant joints and co
pliant foundation. In the assembly, upper (#4) and lower (
joints consist of both stiffness and damping matrices of
mension # and two paraliel paths are clearly seen. The stn
ture also has a compliant foundation/termination (#1} wh
acts as an energy sink. For the sake of simplicity, onl
single excitation is considered in this study although
methods are capable of handling multiple excitations wit
the source structure. The system matrices are given as 1
lows in matrix form:

M, =diag[ M, ,M;], (2
k=% ) ¢
= {Sscs (C:j’ .
M, = diag[M; ,M; . M;], (@
[ K, -K, 0 ]
K,={ “K: K;+K; -K;]|, (
[ 0 K Ky
[ ¢, -G 0 ]
C,=| " C GC+C -G, {
L 0 -G Cs
K, = diag{ K, . K], (
C,=diag[C,,C], (
K,=K|, {
C,=C,, (
and for the modal approach the connectivity matrices ar
L.=([1,0], {
L, =diag[ LI], (

T. E. Rook and R. Singh: Power flow through joints



upper path

FIG. 2. Schematic of lumped parameter model. All quantities are matrices
or vectors of dimension n.

I 00
L=y o 1}

.(26¢)
Lbz[ls 0’ 0], {26d)
K.=K,=diag[K,,0,0], (26e)
C.=C,+diag{C,,0,0], (26f)
M.=M,, (26g)

where L, selects the excitation degrees-of-freedom, L, se-
lects the joint interface coordinates of the source structure,
L. selects the joint interface coordinates of the receiver
structure, while L, selects the foundation coordinates of the
receiver structure. :

We now consider both of the proposed approaches. Us-
ing Eq. (23), we obtain the following mobility matrices of
each component with reference to Fig. 2:

. . L. 2 . L d
Y w)=ie L [K,— 0’M,+iwC,]! e (27a)

. Le 2 . -1 L. T
Y w)=iw L, [K,— oM, +iaC,] L, - 27

Y (w}=iw[K,+iewC,] ™}, (27¢)
Y wi=io[K,+iwCy] !, (27d)

where each of the submatrices in (26} and (27) are of dimen-
sion n. These properties in conjunction with Egs. (18) and
(19) from Sec. II C yield the power dissipated in each com-
panent, The transmitted powers can be obtained from the
Power balance equations (Sec. II C} as mentioned eatlier,
€8, P (w)=P%(w).

B. Case studies

1. Scalar joints

Using the exnressinne (25) in the synthesis procedure ( 6)
and (7), we now investigate the power flows between the
Componefits initially for the case n=1, using the following
Patameters: M, =5-m, My=3-m, My=m, My=m, M;=2-m;

2887 ). Acoust. Soc. Am., Vol. 97, No. 5, Pt. 1, May 1995

Input power, PN

Q o1 02 03 0.4 1.3 12 .7 08 0.9 1

17}

Frequency, f

FIG. 3. Comparison of input power for the fumped parameter model (n=1)
using different approaches. exact (unsynthesized), QOO0
mobility-based synthesis.

K, =2k, K;=4-k, K;=2-k, K;=10-k, K;=10-%, K;=5 -,
where m and k are arbitrary; and C# = nKF for u=1,...,6. In
Fig. 3 we show the comparison of the input power flow using
the exact (unsynthesized) and proposed (synthesized) mobil-
ity and modal methods. Here the frequency scale f can be
viewed as dimensionless given m=k=1. The excellent
matches are to be expected since our synthesis procedure,
like olhers.,‘t is exact when the full modal basis, or all the
degrees of freedom, are included. For our system, there exist
thermodynamic  limits on the power flows, ie,
Pi{a)> P, (0)>Poylw) or ag{w)<ap,(w}<1 due to the
fact that all of the components besides the source are passive.
If we now use the power ratios, a, to study the power flows
through the joint paths as in Fig. 4, we note a peculiar oc-
currence; the power flow through the upper joint is greater
than one which may seen to violate the earlier thermody-
namic considerations. Nonetheless, although the upper joint

25

o
T

Power ratia, w(f)

[
n

Q 21 0.2 0.2 Q.4 0.5 o8 0.7 o8 0.9 1
frequency, J°

FIG. 4. Power ratios for the lumped parameter model (n=1).
(lower path); —-—- a,, (upper path); and -- - &4 .

P
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Power ratio, aif}

0r

10" i 'S L ' L L A L "
Q 0.1 a2 0.3 o4 0.5 0.6 oz 0.8 09 1

Frequency, f

FIG. 5. Effect of joint damping on the transmiticd power of the !umpcd
parameter model (=1} 3=10"% - = p=107% and .-
=107,

power ratio exceeds one, the net joint/path power ratio is less
than one, so that the thermodynamic conditions are indeed
satisfied.

Next, one can consider some damping studies using the
mobility approach. Figure 5 shows the effect of altering the
joint dissipation characteristics. Increasing the joint damping
only has large effect on the power transmitted in the fre-
quency regime where there is reasonably large relative dis-
placement across the joint. This is further examined in Fig. 6
where large g, ; values show frequencies at which the jeint
dynamics are dommam at f=0.5 the lower joint dissipates
the most significant portion of the power, while the upper
joint never dissipates more than 50% of the power.

Whereas the advantage of the mobility approach is its
reduced dimension, the advantage of the modal approach is
the ability to study structural modal dissipation efficiencies
(22). This capability is demonstrated in Fig. 7. When inves-
tigating the efficiencies of the assembly modes (Fig. 7(a),(c)]

B,

Dhasipation efficiency, a(f}

i i L 4 L i L

23 04 0.5 ¥} a7 1] oR 1
Frequency, f

FIG. 6. Dissipation efficiencies of the joints for the lumped parameter model
(n=1). @, (upper path); —-— g, {lower path).
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FIG. 7. Moda! dissipation sfficiencies for the lumped parameter mo 4 T

=1), (a) For the assembly modes. @, == Opyand - PR
(b) For the receiver component modes. T i; — = T and
@, 3. (¢} For the assembly modes. 0, 4; —— &, 5. (d) For the .-..:';;

component modes. --- &, 3.

at a frequency which coincides with a natural frequency, o
notes that most of the power is dissipated by the assemh_
mode which corresponds to this natural frequency. The &
sembly modal dissipation efficiencies will have only a smgk,
peak occurring at its corresponding natural frequency. Alsp
one may note that some modes do not dissipate much pow%
for example modes whose nodes (antiresonances) coincide
with one or more excitation locations contribute significant
less to the power dissipation. However, since we are mlef—
ested in suggesting modifications to the components, we
should also investigate the component modal dissipation cf-
ficiencies as given by Eq. {22); Fig. 7(b} and (d) show these
resuits side by side with the assembly response for the

of comparison. The rigid body mode of the semidefinits
source component has no contribution to the dissipated
power since it has no strain energy (or relative displacement)
associated with it. Similarly, modifications to the joint damp-
ing should have the largest effect near the 4th natural fre
quencies of the assembly since they correspond to the modes
with the most significant relative displacements across the
lower joint.

2. Vector joints

Vector paths are simulated next by setting n=2 in EA:Is

(25}—(27) and using the following system matrices: .*:{

o3

M, =51,
M,=131,,
M;=1I,
M,=1I,,
M;=2I,,
K;=28,
K;=48§,
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Frequency, f
FIG. 8. Power ratios for the lumped parameter model (n =2). L
{lower path}; —-—- &, {(upper path); and -~ a,, .
K;=28, (28h)
K =108, (28i)
Ks= 108, (28§)
K,=358, (28k)
where
_ 1.00 0.75 28
=l0.75 1.00 (281

and 1. is the 2X2 identity matrix. Figure 8 shows the power
ratios for the upper and lower path as well as for the foun-
dation path. Again we note that as in Fig. 4, the power ratios
through each path may exceed one, but their sum must be
less than one. Increasing the joint damping has the effect of
reducing the transmitted power ratio as revealed by Fig. 9.
An increase of the joint damping factor by an order of mag-
ritude {from =0.001 to #=0.010) causes the power ratio to
decrcase by an order of magnitude at the higher frequencies.

1% F
¥
g
hd 107}
ko)
a
H
'Y
10t 4
1g* A N " . s i " . .
0 a1 0.2 0.3 0.4 0.5 C6 o7 0.B 09 i

Frequency, f

PG, 5. Eff¥ct of joint damping on the transmitted power for the lumped
Parameter moded (n =2). 7=10"% —.—. =10"% and ---- p=10"2
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FIG. 10. Dissipation cfficiencies of the joi1'1ts for the lumped parameter
model {n=2). 0,10, {upper path); —— 0,3+ 0, . {lower
path}.

In order to distinguish the frequencies at which the joint
become active, Fig. 10 shows the dissipation efficiencies of
the upper and lower paths. There exist two frequencies at
which the lower joint dissipates the majority (70%) of the
assembly’s power; incidentally, it is at these frequencies that
the joint dissipation had the most effect in Fig. 9. Dissipation
efficiencies of selected assembly and component modes, as
shown in Fig. 11, show trends similar to those of Fig. 7.
Again the receiver modes are most efficient at low frequen-
cies while the (nonrigid) source modes dominate at the
higher frequencies. This seems consistent with continuous
systems in which high frequency energy fails to escape the
structural near-field. Also noteworthy from a design aspect is
that the dissipation of the 6th and 9th assembly modes can be
attributed mostly 1o the 6th receiver mode. This result can
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FIG. 11. Modal dissipation efficiencies for the lumped parameter model
(n=2). {a) For the assembly modes. Ty == Opeand - O, .
{b) For the receiver component modes. casand @
{c} For the assembly modes. - @,.19- (d) For the source
component modes.
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FIG. 12. Investigation of effect of joint compliance on input power for the
lumped parameter model {n=2). compliant joints; —-— rigid joints.

simplify design modifications by allowing the designer to
concentrate on a particular component mode rather than mul-
tiple assembly modes.

In the next set of figures the importance of properly
modeling the joints is demonstrated. Figure 12 shows the
difference in the response for rigid and compliant joints. The
system with compliant joints has ten natural frequencies
while the system with rigid joints has only six natural fre-
quencies (since q,=q, and q3=gs). For frequencies greater
than 0.1, the difference becomes quite significant. In any
structure, these differences become pronounced in the fre-
quency range where there is significant displacements across
the joints. Not only is the compliance of the joint important
but so is the dimensionality of the joint. The effect of mod-
eling the joints as scalar rather than vector paths is shown in
Fig. 13. For the n=2 case, we will refer to the first degree of
freedom at each node as the primary degree of freedom, and

Input pawer, Pip

1 % A L I L n A A L Il
0 0 01 Q.2 03 0.4 o5 06 0.7 08 vh: ] 1

Frequency, f

FIG. 13, Investigation of effect of neglecting vector path in joint on input
power for the lumped parameter model (r=2). vector path; —-—-
orﬁ( first scalar path included in both joints; ---- only second scalar path
included in both joints. Dimension of scalar path is 1, dimension of vector
path is 2.
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over the entire frequency range

1. CONCLUSION

Refinements to two existing methods have been
duced which allow one to study the effects of joints of
structure-borne power flow at Jow fréquencies. Each of
proposed methods has its own uniqué: emphasis or appliy:
tion. For example, the mobility method focuses on whi
path transmits the most power between structures. Howeg
the modal method emphasizes which structural mode digs.
pates the most power once it is transmitted into a partich
structure. Furthermore, the importance of properly modells
the joint properties (e.g., their compliance and dimensi¥)
has been demonsirated. Also the importance of the jifiy
damping has been investigated; this is of practical i P
tance since in a builtup assembly much of the damping )
be attributed 1o the joints. sk

Interestingly, the proposed modal method has many pit
allels with other analysis methods; see Ref. 22 for a review.
A comparative study of various methods is ciearly beydid
the scope of this paper, however a few qualitative observa-
tions are as follows. For example, Eq. (23b) for the narro_g
band analysis appears to be similar to the broadband stafis-
tical energy analysis (SEA}) assumption that power dlsmpatcd
is proportional to the system encrgy content. Woodhouse™
further extended the SEA analogy to heat transfer, and
equated thermal capacity to modal density and radiative loss
to damping. A similar but not identical relation can be seen
frorn Eq. (23b), when one notes that the absolute value term.
IG,, is equivalent to the component’s modal kinetic ener-
gies, and 2¢,w, is equivalent to the modal loss factor,  *

Finally, it should be pointed out that the proposed analy
sis methods are exact only when one possesses the entir
modal basis. However for any realistic structure, the mods
basis must be truncated at some finite number. In particula’
the use of free—free boundary conditions makes the proposé!
methods somewhat susceptible to these modal truncationt
Consequently, modal truncation/dynamic reduction issue
need to be addressed since they are believed to be critical i
the successful implementation of the methods 1o practlﬁ
problems which may range from sheet metal structures
rotating equipment.
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