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Although nonlinear systems subject to combined parametric and external excitations have been
examined in some depth, very few of these investigations have addressed the influence of a mean
(time-invariant) load on the system response. In particular, the importance of the mean load effect
has been highlighted in the study of whirling asymmetric shafts, where significant changes in system
response and stability occur under the influence of gravity. The present paper intends to characterize
the specific effect of mean load on the dynamic behavior of a Hill’s oscillator with a clearance-type
nonlinearity while also being subjected to a periodic base displacement excitation. The parametric
continuation technique and method of harmonic balance would be used for this purpose. Issues
discussed would include the coupling between the mean load and the dynamic response amplitude,

¢ interaction between the parametric excitation effect and the clearance nonlinearity, and comparison
between time-invariant and time-varying systems. Further, a geared system has been analyzed as a
practical application of the nonlinear Hill’s equation examined. Earlier studies on gear dynamics
have been reexamined to provide improved correlation with prior experimental data; new
interpretations for some of the nonlinear phenomena in the experimental data has also been provided
based on our study. © 1996 Acoustical Society of America.

PACS numbers: 43.40.At, 43.25.Ts

INTRODUCTION

Two important class of problems emerge as deviations
from the linear differential equations with time-invariant or
constant coefficients (LTI). The first group refers to the linear
time-varying (LTV) problems, which have been classified as
the Hill’s or Mathieu’s equations, when the time variations of
a parameter is sinusoidal or periodic.!™® The second group
consists of nonlinear differential equations but with time-
invariant coefficients (NLTI). The classical literature on dif-
ferential equations or vibrations treats both time-varying and
nonlinear problems separately as stated above.™> Only Den
Hartog' in his famous book on mechanical vibrations cov-
ered both topics under the same broad umbrella of variable
elasticity since he believed it to be of major importance in
mechanical engineering and related disciplines. McLachlan®
coined the term nonlinear Hill's equation to describe prob-
lems with both time-varying parameters and nonlinear ef-
fects: he studied a single-degree-of-freedom oscillator with a
time-varying linear stiffness added to a cubic stiffness varia-
tion. A number of authors®~® have examined similar class of
problems but few have considered the effect of a time-
invariant or mean load on the system response.

For noncircular shafts, Den Hartog' showed that at one-
half the critical speed, parametric instability only occurred
for horizontal shafts, thus demonstrating the significant effect
of gravity in altering system stability. He also established
that while instability occurred at critical speed for a vertical
shaft the response of the horizontal shaft was stable. Rao?
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expanding on Den Hartog’s' and Tond!’s® work obtained an
analytical solution for the response of a perfectly balanced
horizontal rotor; the influence of gravity caused the system to
respond at twice the shaft running frequency and hence any
periodic disturbance at twice the running speed could make
the system unstable (subharmonic resonance). However,
these analyses were limited to linear systems and the effect
of an additional external excitation or mean torque was not
copsidered. On the other hand, a number of authors*~'? have
éxamined the response and stability of time-varying systems
including the effect of nonlinearities and/or external excita-
tions, but almost none have considered the influence a time-
invariant or mean load has in modifying the stability and
response of such systems.

Our interest arises from machinery vibration and acous-
tics where many real life problems including those with ma-
chine elements exhibit periodic parameters (which vary in
time or space) and nonlinear characteristics simultaneously.
The mechanical model representing them is often under the
influence of a time-invariant or mean force (torque) and a
periodic excitation that is related to the kinematics of the
system; similar problems can be found in other applications
or disciplines. Consider, for instance, the subject of gear dy-
namics which essentially represents an application of the
nonlinear Hill's equation. It has been identified, for instance,
that the periodic variation of the gear tooth meshing stiffness,
a consequence of the alternate engagement of m and m+1
pairs of teeth, has a significant influence on the geared sys-
tem’s dynamic response. Further, the main source of excita-
tion in a geared system, under constant torque loading con-
ditions, is the gear transmission error (which is periodic in
time); this error is composed of deviations arising from the
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Kt{a +fgx)}
K(@® = K [1 +vh(D)]
h(t + 2r/Q,) = h(t) e(t) = Ey(t)

y()=y(t + 2m/Q,)

FIG. 1. A single-degree-of-freedom nonlinear Hill's oscillator with base
displacement input; the model is under the influence of a mean load F,, .
Mass and damping elements are linear and time invariant.

gear tooth deflections under the influence of a mean load, as
well as those from manufacturing inaccuracies or modifica-
tions. If the dynamic response is sufficiently large in ampli-
tude, nonlinear phenomena such as tooth separation and back
collision of teeth can occur, initiated by the presence of gear
backlash.

The main objectives of this paper are (1) to investigate
the influence of a mean or time-invariant load on the re-
sponse and stability of a nonlinear Hill’s oscillator, and (2) to
study the dynamic interaction between the parametric exci-
tation term and the backlash-type nonlinearity. To study the
effect of a mean load on system response, we first examine a
single-degree-of-freedom (SDOF) oscillator model incorpo-
rating periodically time-varying and nonlinear effects. The
oscillator model can be thought of as a simplified represen-
tation of a geared system and is under the influence of a
mean load and.a periodic base excitation. Next, we use a
three-degree-of*freedom transverse-torsional model of a
geared system in order to highlight the interaction between
time-varying and nonlinear effects. Some of the simulation
results are compared with previously published experimental
data to demonstrate validity of the model. Also, this investi-
gation throws light on some of the unexplained phenomena
reported in those experiments.

. PROBLEM FORMULATION

Consider the single-degree-of-freedom (SDOF) me-
chanical oscillator of Fig. 1 with both time-varying stiffness
K (1) and nonlinear elasticity function f(x). The equation of
motion is as follows, where the mean force is F,, and the
periodic base displacement excitation e(f)=E (1),
Y(y=y(t+27/€,), £, being the fundamental base excita-
tion frequency:

mi+c (y—é)+cny+aK(t)((r)—e(r))

+BK(1)f(y—€)=Fp, A (1)
where the elastic constraint force is given by
K(t)=K,[1+vh()]. 2
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Here, K, is the mean stiffness, ie., K, =(K(r)),. The
periodic  variation in stiffness is given by
h(1)=h(s+2m/,), where (), is the pumping frequency.
Here a, 3, and 7y are scalar parameters that can be adjusted to
suit the problem in hand. On substituting x(¢)=y(t) —e(?),
one gets the following equation:

mi+ (cp+ cp)x+ aK()x(1)+ BK(1)f(x)
=F,—mé(t)—cné(t). 3

The nonlinearity, f(x), under consideration is the clear-
ance type and is given by

x_bx, .x?bxv

fx)= 0, -b=x=b,, @)
x+b,, x=<-—b,.

Equation (3) representing the nonlinear Hill’s equation
with base excitation is nondimensionalized by choosing
=QNt, Qy = K,/m, p=x/b., b=blb., py
= ¢p/VKm, and 2{Qy = (¢, + cp)/VK,,m. Further, the
stiffness variation and the base displacement input is as-
sumed to be represented by a single harmonic, i.e., ¥(t)
=—h(t)=cos(w7), with = w;=0Q;/Qy; j=e,f. This leads
to the nondimensional equation for base excitation where
fm=F/mQ3:

p"+2Lp' +{1 -y cos(wm)}f(p)

=f,,+ w’E cos(wT)+ wpE sin(wr). (5)

Il. DYNAMIC ANALYSIS OF NONLINEAR HILL'S
OSCILLATOR

A. Linear time-varying system

Let us solve the above equation for the linear case, i.c.,
f(p)=pV¥p, by using a multiterm harmonic balance
scheme.!! The harmonic balance scheme is chosen over other
techniques such as perturbation methods since no limiting
assumptions need be made regarding the strength of the pa-
rameter ¥. It is also fairly straightforward to calculate the
effects of higher harmonics in the solution. Further, when the
clearance nonlinearity is introduced in later sections conven-
tional perturbation schemes cannot be used as it is a strong
nonlinearity; the harmonic balance scheme does not suffer
from such a restriction. The procedure assumes a truncated
trigonometric expansion for p(7):

NI
Po .
p(1)=5+ 2 (P21 cos(kwn) +py sinkwn)}. (6)
For the linear time-varying (LTV) case (f(p)=p,Vp)
one can get the following linear algebraic equation for the

harmonic coefficients, p;, i=0....,2N, by substituting Eq. (6)
in Eq. (5) and balancing like harmonic terms:

2N
Z()Aijpj=b;, i=0,...,2N,. )
=

The nonzero elements of A ij and b; with i,j=0,...,2N, are
defined below:
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Y
A0.0=-2—v AO]‘A]‘o——E; (Sa)
An-1-1=(1-k%0?), Ay u=2kol,
k=1,..,N,; (8b)
Apna=(1-kw?), Ayy_,=-2kol
k=1,...,N,; (8¢)
Azk—12k+1= A2k 24+ 2= Agier 124 1
=Azk+2.2
=-2Z, k=1,...N,—1;  (8d)
b0=fm’ bl:'Elwzv EI=E- (86)

In Eq. (1) p is assumed to be zero. The solution for a one
harmonic term (p(7) = py/2+p, cos(w7)+p, sin{w7)) can be
given explicitly as

ful(1= 072+ (2{ @)} + (Y2){E  0X(1 — 0?)}

Po D ,

(9a)
_1 (=) {fuy+E 0%}
Pi=3 D , (9b)
3
P2=2ng , (9¢c)
1 - . [7)? ;
D=3{(1-0)"+2fw)}=| 3] (1-0?). (9d)

Equations (9) clearly show that the parametric stiffness
coefficient vy introduces a term in the amplitude of the first
cosine harmonic, coupling it with the mean load. Unlike a
linear time-invariant system (LTI) the steady-state system re-
sponse is nonzero even in the absence of a forced excitation
(E,=0). This is due to the mean load, f,, , in the LTV system
acting like an external forcing term. In fact as w—0, these
expressions can be approximated as

Po2~2f,1(2= %), p\=2f,¥I(2=¥"). p,~0.
(10)
Consider the case when the stiffness variation and the
base displacement excitation are periodic and contain more
harmonics, for instance, as shown in Fig. 2. Asymptotically
the peak-peak amplitude of the response, p, still follows Eq.
(9) as seen in Fig. 3(a) where f,,=0.10 and y=0.20 and in
Fig. 3(b), where f,,=0.10 and y=0.38. These figures also
show a comparison between the system responses, obtained
by a multiterm harmonic balance scheme numerically, with-
out and with the presence of a base displacement excitation.
The forced excitation causes significant effect mainly at the
higher frequencies and has little effect at frequencies below
w~0.15. Figure 4 shows the variation with w, of amplitudes
of the first three harmonics of p corresponding to f,, =0.10
and y=0.38. Observe that even in the absence of the excita-
tion, there are parametric resonances at w=1,4,4 4,..., etc. The
system can exhibit instability at these parametric resonances
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FIG. 2. Periodic time profiles of stiffness and base displacement excitation,
(a) stiffness variation and (b) displacement excitation variation.

and at subharmonic resonances like w=?2. Figure 5 shows a
plot of the instability regimes around w=1 and w=4 for vari-
ous damping levels. Such plots are usually referred to as the
Strutt diﬁgrams.3‘5 In order to demonstrate differences be-
tween an LTV and an LTI system, we plot the coincidence
and quadrature of the second harmonic of p(7). As seen from
Fig. 6, one can see that the LTV system behaves like a
MDOF linear time-invariant system due to the presence of
the parametric resonances. In each of the regimes between
the resonances, the co-quad plot looks similar to a single-
degree-of-freedom LTI system.

B. Nonlinear time-varying system

Now we include the effect of backlash, thus making the
system nonlinear. The system responses shown in this and
later sections are obtained by using the parametric continua-
tion scheme '~ which is outlined briefly below.

The parametric continuation method is based on the
shooting method, which has been applied classically to solve
boundary value problems. Since periodic solutions and their
stability are of interest in our case, the initial value problem
is transformed to a boundary value problem with periodic
end conditions. The shooting procedure'2-!4 is applied itera-

tively, using direct numerical integration from =0 to r=17,,
until p(0)=p(7,), where To=2mml/w, m being an integer;
m=1, for instance, would yield solutions which have the
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FIG. 3. The frequency response of an LTV system subject to base excitation,
(a) with f,,=0.10, y=0.20 and (b) with f,,=0.10, y=0.38.

same fundamental period (called period 1 or P1) as the forc-
ing function while m=2 would yield subharmonic solutions
(termed period 2 or P2), whose fundamental frequency is
one-half of the forcing frequency. The periodicity boundary
condition for say m=1 would require the following nonlin-
ear equation be satisfied:

Gi(n)=®,(n)—
7,=q,(0),

7,=0, P n)=q7),
(1)

i=12,

where g,=p, gq,=p'. This equation is solved using a
Newton-Raphson technique which requires the Jacobian as
shown below:

_66,_ ¢9¢’, 5 . '_1 2 6 _ O‘ l;éj'
Pom; o TV PITRA T =g
(12)

In order to solve for the Jacobian elements as well as to
examine the stability of the fixed point solution p,(0) to Eq.
(11), variational equations shown below, with
Mij=0q;/dp;(0), i,j=1,2, are obtained by a perturbation of
the governing second-order differential equation, Eq. (5),
with respect to p:
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FIG. 4. The amplitude response of the first three harmonics of the LTV
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FIG. 6. Co-quad plot for the second harmonic of the response shown in Fig.
4, (a) coincidence, ps, and (b) quadrature, p,.

These equations are then numerically integrated from =0 to
T=m, along with Eq. (5) to yield the Jacobian matrix:

Mia(mTy)

pmn(mry)—1]

- |#nlmT)—1

H2(mty) (14)

The eigenvalues \; (i=1,2) of the Jacobian matrix. J.
thus obtained, determine the stability of the fixed point. If
IN;|<1 the fixed point and the hence the system response is
stable. Stability is usually lost in three different ways: A, =1,
called the saddle-node bifurcation; \;=—1, called period-
doubling or pirchfork bifurcation; a pair of complex conju-
gates with |\|=1, called secondary Hopf bifurcation.

To overcome the singularities caused by the saddle-node
bifurcation for m=1 and pitchfork bifurcation for m =2, ad-
ditional parametric equations, shown below for w as a pa-
rameter where o,=4dq,/dw, 03,=0q,/0w, are obtained from a
perturbation of the governing equation with respect to w:

, 0 1

T, g
= a

[cz} - Z2 - o)

0
+[-—wf,, sin(wT)J' (13)

The above equations are numerically integrated along with
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FIG. 7. Frequency response of the nonlinear Hill’s oscillator corresponding
to Fig. 2, (a) total response and (b) impact transitions.

the variational and governing differential equations from
7=0 to 7=m7,. With this procedure then, a complete fre-
quency response or a variation of the response with a param-
eter like f,, for a fixed w (including the unstable solutions)
can be obtained quite efficiently.

Figure 7 shows the frequency response of the SDOF
system (obtained using the parametric continuation tech-
nique described above), corresponding to a stiffness variation
and base displacement shown in Fig. 2. The damping value
2¢{=0.06 and the mean load f,,=0.10. As can be seen from
Fig. 7(a), the primary and secondary parametric resonances
show a softening effect. This can be explained from Fig. 7(b)
which shows a plot of the maximum and minimum values of
p(7). The system undergoes a transition from no-impact to
single-sided impact at around w=1.12 as the excitation fre-
quency is reduced and again near w=0.35 as the frequency is
increased. The loss of contact implies a reduction in effective
stiffness leading to a softening effect. Next, the level of the
excitation is increased and Fig. 8 shows the resulting fre-
quency response. Figure 8(a) shows a comparison of the so-
lution obtained by the continuation method and a multiterm
harmonic balance method. The harmonic balance scheme
needed about 10-15 harmonics to obtain this excellent
match. In Fig. 8(b) the { order subharmonic solution (P2)
branch is shown along with the regular P1 solutions. For a
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FIG. 8. Frequency response of the nonlinear Hill’s oscillator, (a) comparison
between continuation and multiterm harmonic balance scheme, (b) the sub-
harmonic P2 loop of the frequency response.

wide range of frequencies there are coexisting stable P1 and
P2 solutions. In order to quantify the effect of the parametric
term on the nonlinear system response, a comparison is made
between the response of the nonlinear SDOF model with
time-varying stiffness and with constant stiffness (y=0). Fig-
ure 9(a) corresponds to the time-varying stiffness case and
Fig. 9(b) refers to the time-invariant stiffness case. One can
clearly observe that the effect of the parametric term is to
enhance the nonlinear effects leading to higher peak values.
Further, at low frequencies the presence of the stiffness
variation leads to a nonzero response, while for the constant
stiffness case the amplitude asymptotes to zero. The presence
of the parametric term causes a subharmonic resonance
around w=2.0 [see Fig. 8(b)], which disappears in Fig. 9(b).

Finally we take a look at the co-quad plots of the NLTV
case. Figure 10 shows the co-quad curves for the second
harmonic of the response, p(7), with the system parameters
similar to Fig. 8. It is apparent that at very low or very high
- frequencies. the system tends to behave like the LTV system.
The presence of the backlash distorts the curve leading to
multivalued solutions in the range 0.35=<w=0.85. Also it is
clear from these figures that at lower frequencies the system
response is dominated by the higher harmonics.

In summary then, the parametric term introduces three
major effects to the system response. First, it introduces ad-
ditional parametric resonances (both super- and subharmonic
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FIG. 9. Comparison of the frequency response between (a) NLTV system
(=0.20) and (b) NLTI system (y=0).

types). Second, it produces an interesting coupling effect,
i.e., the response amplitude is proportional to the mean load.
Finally in the presence of time-varying stiffness tends to en-
hance the effect of the clearance nonlinearity.

lil. APPLICATION OF NONLINEAR HILL'S EQUATION
TO A GEARED SYSTEM

In this section we reexamine some of the issues dis-
cussed in the previous section in the context of a geared
system. which represents a practical application of the non-
linear Hill's equation. C)zgﬁven and Houser'> provide a de-
tailed review of various gear dynamic models, and what fol-
lows is a summary of relevant literature. Hortel'® was among
the first to develop a multi-degree-of-freedom (MDOF)
model for a gear pair using Lagrangian mechanics. The
model included the parametric excitation effect due to the
periodic variation of gear tooth rigidity, as well as the effect
of transmission error excitation. His analysis, based on a
Fourier series expansion, was, however, for the linear case
(although time varying). Munro'’ carried out extensive ex-
periments on a spur gear pair of unity ratio, for a variety of
mean torque conditions. In his investigation, he observed the
occurrence of subharmonic and quasiperiodic solutions, even
under design load conditions (a heavily loaded situation). His
analysis, based on the Mathieu’s equation,’~* predicted the
possible presence of a subharmonic resonance. However, the
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system parameters were such that there was a near 1:2 ratio,
over most loading conditions, between the two transverse-
torsional natural frequencies. Munro observed quasiperiodic,
beating-type phenomena in his experiments, but could not
explain these by his simple analysis.

Kiiciikay'® used an eight-degree-of-freedom model
based on multibody dynamics, which included trapezoidal
mesh stiffness variation, transmission error excitation and
gear backlash, and bearing flexibilities. The stability of peri-
odic solutions near the combination and parametric reso-
nances was determined by numerical integration, based on
the Floguet theory. His conclusion was that for both spur and
helical gears, instabilities can probably occur at the double-
tooth eigenfrequency. Kahraman and Singh'® have identified
the possibility of subharmonic, quasiperiodic, or chaotic so-
lutions based on a three-degree-of-freedom model of the gear
pair; they did not, however, attempt to quantify the parameter
regimes where such solutions were more likely. In the fol-
lowing section the model developed by Kahraman and
Singh!® will be used to validate and explain some of the
experimental phenomena (previously unexplained) reported
in the literature.!7%

A. Governing equations

The governing equations for a three-degree-of-freedom
model of the gear pair shown in Fig. 11 is shown below;
refer to Kahraman and Singh'® for more details:
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FIG. 11. The coupled transverse-torsional model of a gear pair, (a) the
schematic of the system and (b) the nonlinear function representing gear
backlash.
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TABLE 1. Simulation parameters extracted from experimental data of Munro'” and Kubo.”

Stiffness Damping Mean Transmission
Reference (nondimensional) (nondimensional) load, F,, error, ¢,
Kubo® (125 0 02457 T[o00s3 0 0007 | 0135 0.04
1o gear error 0 135  ~0245 0 0.052 -—0.007 '
125 -135 149 | o024 -0021 008 |
Kubo® (125 0 024571 T0053 0 00077  0.135 0.012
with gear 135 —0245 0 0052 —0007
error
125 -135 149 | 0024 -0021 008 |
Munro'” (094 0  0245] [0047 O 00 0.183 0.006
design load 0 094 —0.245 0 0047 =-00
094 -094 149 | | 003 -003 009
Munro'’ 083 0 0245 7 [ 0.04 0 0.0 0.105 0.03
:‘j;g‘des'g" 0 083 —0245 0 004 =00
1083 -083 149 | [0027 -0027 009
0 Ky, (r K, (7)
Kii=——=, K; = T
{E.(1)} ° @yt T mOy
N}= - :
¢ u T.(1) (24)
—mge,(t)+ X K(7)
I Ky(T)=——=r, i=12;
mgQy
Pn—by, pp>by, i 7
= = b 1
f(ph)= 0, —bhsphsbh’ (20) bi ——2'—, m=___m_2___’
- . m b, Rym Qyb,
Prtby.  —by>py; ) (25)
2 2 2yy- T.(t
Umg=(RU1))+(R3/1,);  N={1+(I,R}1,R})}"", F.(7) )\__4__)7__’ i=12.
(2 1 ) R 1 mgQNbc

Pr=R\0,—R16.+y,—y,—e,.

The time-varying mesh stiffness is periodic. with a fun-
damental time period. t,,=27r/(—lh;: S—)h=Np(_2_v, where N, is
the number of pinion teeth and (), is the shaft rotation fre-
quency in rad/s. The transmission error, e,(f), is also peri-
odic with the same fundamental time period as the mesh
stiffness variation, provided no misalignment or run-out er-
rors are considered. Equation (16) is nondimensionalized
both in time and space by defining 7=}y and dividing all
the variables with respect to the backlash b, . This yields the
following equation: :

L0 Of [y du 0 L |y
0 1 0|¢vap+[ 0 & —{nl{y
-1 1 1){prh 0 0 ¢33 )LPa
K 0 KIS(T;Tm) Vi
+ 0 Ky "'K23(7':Tm) ya
0 0 K337 Ty) fp)
Fy, 0
={Fp2p + 0 ; (22)
F,, —e (T T Ts) T F (7i7))
L - & =S s @
gii_miQNv {iS—miQN’ 533_mgQN’ 1= 1,4 ( )
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B. Interpretation of prior experimental data

The equations representing the dynamics of the three-
degree-of-freedom model'® developed in the previous section
is now used to validate prior published results based on the
experimental testing of spur gears.'”?* Table I lists the pa-
rameters used in this study. These parameters correspond to
Munro's experimental setup for various loading conditions'’
and Kubo’s experimental apparatus for testing spur gears
with and without gear errors.?’ It can be seen that the param-
eters for Munro’s rig!’ lead to a near 1:2 relationship be-
tween the first and second transverse-torsional resonances
over most loading conditions. The variation of stiffness and
transmission error were estimated based on the data
provided.”® For Kubo’s setup the bearings and shafts are
much stiffer leading to a very high second transverse-
torsional resonance. Again, based on the information about
the gears, the gear errors and stiffness transmission error
profiles have been estimated from Ref. 20. Figure 12 shows
the complete response of the dynamic transmission error
pr(7) and y,(7) for Kubo’s parameters with and without gear
errors. The damping matrix was calculated based on an as-
sumption of 3%-5% modal damping. This system exhibits a
number of superharmonic resonances. There is also the soft-
ening effect near the first linear transverse-torsional reso-
nance. However, the system does not exhibit subharmonic or
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FIG. 12. Simulation results for Kubo's experimental system:? (a) dynamic
transmission error, p,, and (b) bearing displacement, v,; see Table I for
parameters used.

nonperiodic solutions. Figure 13 shows the comparison be-
tween simulation and Kubo’s experimental data for the two
cases (with and without gear errors). The simulation results
correspond to the stable portions of Fig. 12, which have been
scaled to relate to dynamic factor plots of Kubo.?® Notice the
excellent correlation between predicted and measured reso-
nant peaks as well as a reasonable match in predicting am-
plitudes. Kahraman and Singh'® had used a heavily damped
(£33=0.20) SDOF model to correlate this particular experi-
ment data. But their SDOF model could not explain the peak
near {),~1.2. This is a superharmonic resonance peak {order
3) of the second transverse-torsional mode and is predicted
quite well by the full three-degree-of-freedom model. Also.
the damping levels used in the present simulation model
were much lower than that used by Kahraman and Singh."
Munro’s rig!’ leads to more dynamic interactions than those
corresponding to Kubo’s ca\se.20 The gears tested were de-
signed to have minimum transmission error at design load. In
order to compare the experimental results with those of the
simulation, only two loads were picked—one being the de-
sign load and the other is half the design load, where a bigger
effect of the nonlinearity on the system dynamics is antici-
pated. Figures 14 and 15 show the complete response ob-
tained for the design and half-design load conditions, respec-
tively. Notice that in both cases the system exhibits stable
subharmonic solutions (type P2) around the second linear
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FIG. 13. Comparison of simulation and experimental results for Kubo’s
rig:® (a) no gear error and (b) with gear error; see Table I for parameters
used.

transverse-torsional resonance. This prediction is in agree-
ment with the experimental results where P2 solutions occur
around the second resonance. Figure 16 shows the compari-
son between experiment and the stable parts of the simula-
tion results of Figs. 14 and 15. For the half-design load case,
several regimes exist where stable quasiperiodic solutions
can occur. Again this prediction by the present simulation
model is in close agreement with the effects reported by
Munro.!” This effect can be possibly due to the 1:2 internal
resonance. In a multi-degree-of-freedom system, an internal
resonance occurs when any two linear natural frequencies of
the system have an almost integer ratio, i.e.,
w,=jw;=jw;+€,j being an integer. This may lead to an
exchange of energy between the two corresponding modes
modulated by the difference in the frequencies, €, causing
quasiperiodic or beating-type response.

IV. CONCLUSION

In this paper, various issues related to the nonlinear
Hill’s equation have been highlighted. The mean load has
been shown to have a significant influence when the system
has time-varying parameters. A coupling effect has been es-
tablished between the mean load and the amplitude of the
system response. The dynamic behavior of the nonlinear
Hill’s equation has been compared to the NLTI case and the
differences in response have been highlighted. Further, a
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FIG. 14. Simulation results for Munro's rig'” for design load conditions
with (a) dynamic transmission error, p,, and (b) bearing displacement, v,;
see Table I for parameters used.

geared system has been analyzed as an application of the
nonlinear Hill's equation. The prior model of Kahraman and
Singh'® has been reexamined to provide improved correla-
tion with prior experimental data. Also, new interpretation
for some of the nonlinear phenomena in the experimental
data has been provided.

2 T T T T T
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FIG. 15. Simulation results of dynamic transmission error, p, , for Munro’s
rig!’ for half-design load conditions.
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FIG. 16. Comparison of simulation and experimental results for Munro's
rig:'" (a) design load and (b) half-design load: see Table I for parameters
used.
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