STRUCTURAL INTENSITY CALCULATIONS FOR COMPLIANT PLATE-BEAM STRUCTURES CONNECTED BY BEARINGS

T. E. ROOK† AND R. SINGH
Acoustics and Dynamics Laboratory, The Ohio State University, Columbus, OH 43210-1107, U.S.A.

(Received 19 February 1996, and in final form 3 September 1996)

A computational strategy, based on component mobility and modal synthesis approaches, is described to calculate structural power flow through multi-dimensional connections such as rolling element bearings and joints. Research issues are discussed in the context of narrow band frequency analysis methods for vibration energy transmission and dissipation. Through the example case of a beam (shaft), ball bearings and an elastic machinery casing plate, the structural intensity calculation procedure is illustrated. A new pre-synthesis algorithm is outlined which is utilized to determine the effective stiffness of ball bearings while accounting for the compliance of the neighboring structure. The finite element method is used to facilitate computations and to generate structural intensity results in the post-synthesis mode. Sample results are included along with a discussion of various research issues.

© 1998 Academic Press Limited

1. INTRODUCTION
The use of vibratory power as a quantifier of structure-borne noise is gaining wider acceptance and is emerging as a new trend in the dynamic analysis of structures and machines [1–4]. For instance, from vibration isolation theory [5] it can be shown that the power flow between components could be minimized by maximizing the impedance mismatch between them [6, 7]. However in many realistic machines and structures, an impedance mismatch may not exist between components, and typically the compliance of the external casing may be the same order of magnitude as the internal machine [8]. The purpose of this paper is to address such problems with potential application to a generic machinery casing which may be treated as a compliant receiver—in this case, a clamped plate. The rolling element bearings, which are installed in the plate, will also be modelled with an added but necessary complexity in this paper. Moreover, a new pre-synthesis algorithm is proposed which calculates the bearing stiffnesses while accounting for the compliance of the neighboring structure. Also, a post-synthesis algorithm is developed to compute spatially distributed vibratory power flows, such as structural intensities, and its technical feasibility is demonstrated with a plate–bearing–beam system. To further illustrate the difficulties associated with realistic compliant structures, a specific mathematical model is utilized which simulates shaft–bearing-casing plate systems (Figure 1). The model developed for the case where the dimension of the casing plate is

† Currently with Copeland Corporation, Sidney, Ohio, U.S.A.
Figure 1. Plate–beam structure with bearing: (a) hole modelled as single node, (b) with finite bearing hole;
A = source (shaft), B = path (bearing), C = receiver (plate).

similar to that of the bearing (Figure 1(a)) requires special attention. The model may be
applied to the simpler case where the dimension of the casing plate is much larger than
that of the bearings (Figure 1(b)). The procedures proposed in this article may be extended
to multijoint, multisource systems, just as the original synthesis procedures were in a
previous paper by Rook and Singh [9]. Narrow band harmonic excitation will be assumed
throughout.

2. LITERATURE REVIEW

Many articles have addressed the calculation of vibratory power flow through structures
[1–9]. However much of the research has been understandably conducted on very simple
structures such as frameworks of one-dimensional beams or of rods [2–4]. The study of
vibratory power flow in more complex structures such as those comprised of plates has
given rise to the use of structural intensity methods [10–13]. For instance, Gavric and Pavic
[10] and Pavic [11] analyzed the intensity for a conservative simply supported plate with
discrete viscous dampers at particular points. It was shown that if modal truncation effects
were avoided, then the intensity field identifies power sources and sinks quite well. Hambric
[12] considered a dissipative cantilever plate with stiffeners using the finite element method.
The intensity field was calculated at the nodes as a product of the forces and velocities,
though it was noted the method resulted in power flow results which were discontinuous
across element boundaries. Pascal et al. [13] studied a square plate with localized damping
and calculated the intensities in the wavenumber domain from experimental vibration
measurements. The divergence of the intensity was demonstrated as an effective means to
visualize dissipation. Bouthier and Bernhard [14, 15] more recently calculated the
structural intensity in plates and membranes using the wave functions for an infinite
medium resulting in “smoothed” response when applied to a finite structure. None of
the above investigators, except Hambric [12], have considered the in-plane motion of the plate
in their calculations.

Consideration of the in-plane motions of the plate becomes important when the joint
is capable of transmitting generalized forces in all directions. The modelling of the rolling
element bearing embedded in a compliant structure consequently becomes important as
well. Much of the prior literature on bearings [16] models the bearing stiffness matrix as
diagonal, containing only translational stiffnesses. However, recently Lim and Singh [17]
proposed a new stiffness matrix formulation which included the off-diagonal terms to
account for transmission of moments. The results from this model were demonstrated on
a simple gearbox system and much improved over those from previous studies. Van
Roosmalen [18] used the same formulation on a more complex gearbox model in order
to predict the system’s modes. All of these studies [16–21] recognized that bearings have
non-linear static force–deflection characteristics and hence these must be linearized in the analysis. However, these studies performed the linearization upon the bearings as if they were rigidly mounted. Yet, Prebil et al. [22] recognized the stiffness of the surrounding structure affects the static load distribution within the bearings and hence the linearization of the bearings must be done in conjunction with the rest of the assembly.

3. STRUCTURAL INTENSITIES FOR AN ELASTIC PLATE

The utility of intensity to qualify vibratory power flow is not quite apparent until one considers 2-D or 3-D structures. For a 2-D structure such as a plate (Figure 2), the time averaged structural intensity components are given as

$$I_x = \langle -\sigma_{xj} \dot{u}_j \rangle, \quad I_y = \langle -\sigma_{yj} \dot{u}_j \rangle, \quad j = x, y, z. \quad (1a, b)$$

For assumed harmonic solutions, these time averaged intensities (I) may be spatially integrated over the thickness (z) as follows: also refer to Appendix A for the definition of symbols:

$$I_x (x, y; \omega) = -\frac{1}{2} \text{Re} \left(\int_{-h/2}^{+h/2} \dot{u}^* \sigma_{xx} + \dot{u}^* \sigma_{yx} + \dot{u}^* \sigma_{xz} \, dz \right)$$

$$= -\frac{1}{2} \text{Re} \left(\int_{-h/2}^{+h/2} \dot{u}^* \tilde{E}'(\varepsilon_{xx} + \nu \varepsilon_{yy}) + \dot{u}^* \tilde{G}_{xx} + \dot{u}^* \tilde{G}_{xz} \, dz \right).$$

$$I_y (x, y; \omega) = -\frac{1}{2} \text{Re} \left(\int_{-h/2}^{+h/2} \dot{u}^* \sigma_{yy} + \dot{u}^* \sigma_{yx} + \dot{u}^* \sigma_{yz} \, dz \right)$$

$$= -\frac{1}{2} \text{Re} \left(\int_{-h/2}^{+h/2} \dot{u}^* \tilde{G}_{yy} + \dot{u}^* \tilde{E}'(\varepsilon_{yy} + \nu \varepsilon_{xx}) + \dot{u}^* \tilde{G}_{yz} \, dz \right). \quad (2)$$

Figure 2. Plate finite element for structural intensity calculation: ●, interior (integration) points.
where $\hat{E}' = \hat{E}/(1 - v^2)$, $\hat{G} = \hat{E}/(1 + v)$ and \hat{E} is the complex modulus of elasticity, $\hat{E} = E(1 + iq)$ or $\hat{E} = E(1 + i\omega)$ representing structural or viscous damping, respectively.

In the authors' synthesis procedures [9], one considers only discrete vibratory systems, therefore the structural intensity will be developed in the context of the finite element method (FEM). For the sake of simplicity the equations for rectangular plate elements will be developed though the same concept may be performed for other geometries. From the Kirchhoff's thin plate theory [23] including flexure and in-plane motion, the displacements are

$$
\begin{align*}
 u_x &= u - z \frac{\partial w}{\partial x}, \\
 u_y &= u - z \frac{\partial w}{\partial y}, \\
 u_z &= w,
\end{align*}
$$

where u and v are in-plane motions in the x and y directions, respectively, and w is the transverse motion. In-plane motions are considered in the present analysis unlike prior studies [10, 11, 13], since the excitation transmitted through the joint may generally couple with both the transverse and in-plane degrees of freedom [5]. The elastic strains are given by

$$
\begin{align*}
 \varepsilon_{xx} &= \frac{\partial u}{\partial x}, \\
 \varepsilon_{yy} &= \frac{\partial u}{\partial y}, \\
 \varepsilon_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}, \\
 \varepsilon_{yx} &= \frac{\partial u}{\partial z} + \frac{\partial v}{\partial x} = 0, \\
 \varepsilon_{yz} &= \frac{\partial w}{\partial x} + \frac{\partial v}{\partial y} = 0.
\end{align*}
$$

Since the joints may transmit forces and moments in all directions, the finite element formulation incorporates both in-plane and flexural motions of the plate. Organizing the shape functions, S, and displacements, u, according to the four corner nodes (Figure 2) yields

$$
\begin{align*}
 u_x &= [S_{1x}, S_{2x}, S_{3x}, S_{4x}], \\
 u_y &= [S_{1y}, S_{2y}, S_{3y}, S_{4y}], \\
 u_z &= [S_{1z}, S_{2z}, S_{3z}, S_{4z}], \\
 \begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4
 \end{bmatrix} &= S_{1x}^T [u_x, u_y], \\
 \begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4
 \end{bmatrix} &= S_{1z}^T [u_x, u_y, \theta_x, \theta_y].
\end{align*}
$$

The in-plane (I) and the out-of-plane bending (B) shape functions above are extracted from reference [23] as

$$
\begin{align*}
 S_{1x} &= (1 - \xi)(1 - \eta), \\
 S_{2x} &= (1 - \xi)\eta, \\
 S_{3x} &= \xi(1 - \eta), \\
 S_{4x} &= \xi\eta, \\
 S_{1y} &= (1 + 2\xi)(1 - \eta)^2(1 - \eta), \\
 S_{2y} &= (1 + 2\xi)(1 - \xi)^2(1 - \eta), \\
 S_{3y} &= -\xi(1 - \xi)^2(1 - \eta), \\
 S_{4y} &= -\xi(1 - \xi)(3 - 2\eta)^2, \\
 S_{5y} &= -(1 + 2\xi)(1 - \xi)(1 - \eta)\eta^2, \\
 S_{6y} &= -\xi(1 - \xi)(3 - 2\eta)^2\eta^2, \\
 S_{7y} &= -(3 - 2\xi)\xi^2(3 - 2\eta)^2\eta^2, \\
 S_{8y} &= -(3 - 2\xi)\xi(1 - \eta)^2\eta^2, \\
 S_{9y} &= (1 - \xi)^2(3 - 2\eta^2)^2, \\
 S_{10y} &= (3 - 2\xi)\xi(1 - \eta)^2\eta^2, \\
 S_{11y} &= (1 - \xi)(3 - 2\eta)^2\eta^2, \\
 S_{12y} &= (3 - 2\xi)\xi(1 + 2\eta)(1 - \eta)^2, \\
 S_{13y} &= (3 - 2\xi)\xi\eta(1 - \eta)^2, \\
 S_{14y} &= (3 - 2\xi)\xi(1 + 2\eta)(1 - \eta)^2.
\end{align*}
$$
and where $\bar{\tilde{\kappa}} = x/l$, and $\bar{\tilde{y}} = y/l$. Substitution of the strains (3) and shape functions (4) into the intensity equations (2) yields

\[
I_x(\bar{\tilde{\kappa}}, \bar{\tilde{y}}; \omega) = \frac{1}{2} \text{Re} \left(\hat{u}^H \left[\frac{i}{\omega l_c l} \int_{-k_2}^{k_2} S_x \hat{E} \left(I_x \frac{\partial S_x^T}{\partial \bar{\tilde{\kappa}}} \right) + v_I \frac{\partial S_x^T}{\partial \bar{\tilde{y}}} \right] \hat{u} \right),
\]

\[
I_y(\bar{\tilde{\kappa}}, \bar{\tilde{y}}; \omega) = \frac{1}{2} \text{Re} \left(\hat{u}^H \left[\frac{i}{\omega l_c l} \int_{-k_2}^{k_2} S_y \hat{E} \left(I_y \frac{\partial S_y^T}{\partial \bar{\tilde{\kappa}}} \right) + v_I \frac{\partial S_y^T}{\partial \bar{\tilde{y}}} \right] \hat{u} \right).
\]

The units of I_x and I_y are [force/time], or equivalently [energy/(length × time)]. In order to ease the eventual integration along the thickness, the shape functions will be separated into components which are constant and those which vary with the thickness:

\[
S_x = (1/l_c) (l, S_x^t - \bar{\tilde{z}} S_x^g), \quad S_y = (1/l_c) (l, S_y^t - \bar{\tilde{z}} S_y^g).
\]

Since the limits of integration in z are symmetric with respect to the neutral plane of the plate ($z = 0$), only those terms which are proportional to z^0 or z^2 contribute to the intensity.

As a result the intensities become expressable as inner products:

\[
I_x(\bar{\tilde{\kappa}}, \bar{\tilde{y}}; \omega) = \frac{1}{2} \text{Re} \left(\hat{u}^H (J_x(\bar{\tilde{\kappa}}, \bar{\tilde{y}})) \hat{u} \right), \quad I_y(\bar{\tilde{\kappa}}, \bar{\tilde{y}}; \omega) = \frac{1}{2} \text{Re} \left(\hat{u}^H (J_y(\bar{\tilde{\kappa}}, \bar{\tilde{y}})) \hat{u} \right),
\]

with respect to the following matrices:

\[
J_x(\bar{\tilde{\kappa}}, \bar{\tilde{y}}) = \frac{\partial S_x^g}{\partial x} \left(\frac{D_x}{l_c} \right) (S_x^g)^T + \frac{\partial S_x^t}{\partial x} \left(\frac{D_x}{l_c} \right) (S_x^t)^T + \frac{\partial S_x^g}{\partial y} \left(\frac{\nu D_x}{l_c} \right) (S_x^g)^T + \frac{\partial S_x^t}{\partial y} \left(\frac{\nu D_x}{l_c} \right) (S_x^t)^T
\]

\[
+ \frac{\partial S_x^g}{\partial z} \left(\frac{\beta D_x}{l_c} \right) (S_x^g)^T + \frac{\partial S_x^t}{\partial z} \left(\frac{\beta D_x}{l_c} \right) (S_x^t)^T
\]

\[
J_y(\bar{\tilde{\kappa}}, \bar{\tilde{y}}) = \frac{\partial S_y^g}{\partial x} \left(\frac{D_y}{l_c} \right) (S_y^g)^T + \frac{\partial S_y^t}{\partial x} \left(\frac{D_y}{l_c} \right) (S_y^t)^T + \frac{\partial S_y^g}{\partial y} \left(\frac{\nu D_y}{l_c} \right) (S_y^g)^T + \frac{\partial S_y^t}{\partial y} \left(\frac{\nu D_y}{l_c} \right) (S_y^t)^T
\]

\[
+ \frac{\partial S_y^g}{\partial z} \left(\frac{\beta D_y}{l_c} \right) (S_y^g)^T + \frac{\partial S_y^t}{\partial z} \left(\frac{\beta D_y}{l_c} \right) (S_y^t)^T.
\]

(5a, b)
\[b = l_y / l_x \quad \text{and} \quad D_1 = \frac{\bar{E}h^3}{(12i\omega)}, \quad D_2 = \frac{\bar{E}hl_x l_y/(i\omega)}, \quad D_3 = \frac{\bar{G}h^3}{(12i\omega)} \quad \text{and} \quad D_4 = \frac{\bar{G}hl_x l_y/(i\omega)}{.} \]

The above matrices are asymmetric and have the units of \([\text{force} \times \text{time}/\text{length}^2]\) or \([\text{stress} \times \text{time}]\). Furthermore, the inner products defined above are not positive definite since the intensity vectors may have either positive or negative components. It is notable that the intensity matrix retains spatial variation in the \((x, y)\) plane. In determining the locations at which the intensities should be calculated, it is necessary to recall that the intensities are functions of the harmonic stress field. Generally in finite element methods the requirements on the admissible functions are relaxed such that only continuity of displacements (continuity) are enforced across the element boundaries (at the nodes). As a result, strains and stresses may experience jumps or discontinuities across two adjoining elements. As mentioned earlier, some previous methods [12] have calculated the intensity as the product of reaction forces and velocities at the element nodes. Yet it is at these nodes where discontinuities in the stress value would occur, which is obviously undesirable in the calculation of intensities (1, 2). However, since smooth interpolating shape functions are used within the element, the strains and stresses are continuous inside the elements. Therefore, in the present study the intensities will be evaluated at interior points of the element as shown in Figure 2. The particular choice of the interior points will be settled shortly.

At this stage the power dissipation density, \(p_d\), may be derived. The power dissipation density is defined such that

\[P_d(V) = \int_V \left(\sigma \cdot \dot{\epsilon} \right) dV, \]

where \(\sigma\) is defined as in equation (1), so that calculating the divergence yields

\[-\nabla \cdot I = \frac{\partial I_x}{\partial x} + \frac{\partial I_y}{\partial y} = \sigma_{xx} \frac{\partial u_x}{\partial x} + \sigma_{yy} \frac{\partial u_y}{\partial y} + \sigma_{xy} \frac{\partial u_x}{\partial y} + \sigma_{yx} \frac{\partial u_y}{\partial x}, \]

where again \(\sigma_{xx} = \bar{G} \varepsilon_{xx} = 0\) and \(\sigma_{yy} = \bar{G} \varepsilon_{yy} = 0\) due to the Kirchhoff plate theory. The negative sign in equation (8) is chosen as a matter of convenience such that it is positive for power dissipated and negative for power injected. Utilizing the equilibrium equations from 2-D elasticity [23] (since \(\sigma_{xx} = 0\) and \(\sigma_{yy} = 0\)) which are

\[\partial \sigma_{xx} / \partial x + \partial \sigma_{yx} / \partial y + q_x = 0, \quad \partial \sigma_{yx} / \partial x + \partial \sigma_{yy} / \partial y + q_y = 0, \]

\[(9a, b) \]

Figure 3. Schematic of rolling element bearings: (a) in compliant structure, (b) with outer race fixed.
with \(q_s \) and \(q_t \) denoting the forces per unit volume, and substituting them into equation (8) yields

\[
P_d = -\mathbf{V} \cdot \mathbf{I} = \sigma_{xx} \dot{e}_{xx} + \sigma_{xy} \dot{e}_{xy} + \sigma_{yy} \dot{e}_{yy} - q_s \dot{u}_x - q_t \dot{u}_y.
\]

(10)

From the first three terms of equation (10), again one may see that the dissipated power is related to the strain energy. Since \(P_d \) was calculated at the interior points of the element, while the external forces, \(q_s \) and \(q_t \), are applied at the element nodes, the last two terms in equation (10) make no contribution to the dissipated power at the calculation points. The power dissipation density for the plate may be calculated as

\[
P_d(x, y; \omega) = \frac{1}{2} \text{Re} \left(\int_{-l/2}^{l/2} \hat{e}^* e(x + \nu v_x) + \hat{e}^* \hat{G} \hat{e} + \hat{e}^* \hat{E}'(e_{xx} + \nu v_{xx}) \, dz \right)
\]

\[
= \frac{1}{2} \text{Re} (\hat{u}^*(P_d(x, y))\hat{u}),
\]

(11)

where the strain-energy equivalence of equation (10) is used to simplify the calculations. The power dissipation matrix in the inner product above is given by

\[
P_d(x, y) = \frac{\partial S^d}{\partial x} \left(\frac{D_i}{E} \right) \left(\frac{\partial S^d}{\partial x} \right)^T + \frac{\partial S^d}{\partial y} \left(\frac{D_j}{E} \right) \left(\frac{\partial S^d}{\partial y} \right)^T + \frac{\partial S^d}{\partial \nu} \left(\frac{D_k}{E} \right) \left(\frac{\partial S^d}{\partial \nu} \right)^T
\]

\[
+ \frac{\partial S^d}{\partial v_x} \left(\frac{v D_i}{E} \right) \left(\frac{\partial S^d}{\partial v_x} \right)^T + \frac{\partial S^d}{\partial v_y} \left(\frac{v D_j}{E} \right) \left(\frac{\partial S^d}{\partial v_y} \right)^T + \frac{\partial S^d}{\partial v_{xx}} \left(\frac{v D_k}{E} \right) \left(\frac{\partial S^d}{\partial v_{xx}} \right)^T
\]

\[
+ \left(\frac{\partial S^d}{\partial x} + \frac{\partial S^d}{\partial y} \right) \left(\frac{D_i}{E} \right) \left(\frac{\partial S^d}{\partial x} + \frac{\partial S^d}{\partial y} \right)^T + \left(\sqrt{\beta} \frac{\partial S^d}{\partial x} + \sqrt{\beta} \frac{\partial S^d}{\partial y} \right)
\]

\[
\times \left(\sqrt{\beta} \frac{\partial S^d}{\partial x} + \sqrt{\beta} \frac{\partial S^d}{\partial y} \right)^T, \tag{13}
\]

which is symmetric and has the units of [stress \times time/length]. From observing equations (11) and (13), one may see that the equivalence of the damping matrix, \(C \), and the power dissipation is

\[
C = \eta K = \int_A P_d(x, y) \, dA = l \int_{-l/2}^{l/2} \sum_{i,j} P_d(x, y; \omega_i, \omega_j),
\]

(14)

where the integration is performed numerically via Gauss integration (\(\bar{x} \), and \(\bar{y} \) are the Gauss points and weights in the \(x \) direction while \(\bar{y} \), and \(\bar{v} \) are the Gauss points and weights in the \(y \) direction). In this finite element formulation, the shape functions are needed to calculate the system stiffness matrices, \(K \), via Gauss integration as above. It is seen that the element stiffness matrix (ESM) may be obtained by evaluating the element dissipation density matrix (EDM), \(P_d \), at the Gauss integration point (\(\bar{x} \), \(\bar{y} \)) and summing those values. Therefore it is computationally efficient to evaluate the element intensity matrices (EIM) at these points also, though they may certainly be calculated at other points.
as well. The EDM and EIM may be formulated in the post-processing stage of the synthesis procedure, just as the strain energy, reaction forces etc., are in the common FEM packages [24]. For example, the velocity field of the receiver can be obtained as in reference [9], that is

\[\dot{\mathbf{u}}(\omega) = i\omega \Phi_1 \Gamma_1 (\omega) \Gamma_4 (\omega) \Phi_2 (\omega), \quad (15) \]

where the matrices

\[\Gamma_1 (\omega) = [A_1 - i\omega^2 I + i\omega \Xi + (L_\Phi \Phi)^T(K_r + i\omega C_r) (L_\Phi \Phi)]^{-1}[(L_\Phi \Phi)^T(K_r + i\omega C_r)(L_\Phi \Phi)]^T \]

\[\Gamma_4 (\omega) = \left[(A_1 - i\omega^2 I + i\omega \Xi + (L_\Phi \Phi)^T(K_r + i\omega C_r)(L_\Phi \Phi)) \right]^{-1} \left(L_\Phi \Phi \right)^T, \]

are functions of the components' modal frequencies \((A_1)\) and vectors \((\Phi)\). Then the appropriate nodal values of the velocity vector \(\dot{\mathbf{u}}\) may be used to calculate the structural intensity and dissipation via equations (7) and (12).

Figure 4. Geometry of ball bearing.

Figure 5. Flowchart of static synthesis procedure used to calculate bearing stiffnesses. \(\square\), pre-processor; \(\blacksquare\), processor; \(\blacktriangle\), post-processor.
As a final point of discussion, it should be noted that active power flow (intensity) may be present in the following situations: (1) in a conservative medium only when two or more excitations are out of phase, and (2) in a dissipative medium. Much of the literature has focused on the first scenario, and when the second situation has been considered it has generally been done so for lumped dampers [10, 11] rather than continuously distributed damping as will be considered here.

4. NEW FORMULATION FOR BEARING STIFFNESS MATRIX

Consider flexural waves of a compliant casing plate of finite dimension. Since transverse loads are being applied to the shaft, capturing the proper bearing characteristics is essential to explain how the plate being modes are excited. Specifically, the moment coupling introduced by the bearings is important [16, 17], since they excite the bending waves as shown in Figure 3. Several investigators have presented stiffness matrices for bearings [19–21], but only recently have such models included the moment coupling [17, 18]. A further complication in the calculations is that the bearing stiffnesses must be obtained via linearization techniques [16–21] since the contact forces in the rolling elements are Hertzian in nature. Usage of this linearized stiffness in modal analyses requires that the mean loads are much greater than the alternating loads [17] as will be assumed here. As a further note, most of the prior formulations [16–21] calculate the bearing stiffnesses by assuming that the outer race is held fixed (see Figure 3), i.e., that the receiver is rigid. The consequences of this assumption will be investigated in section 6.

In considering the ball bearings which are assumed to have point contacts between the ball and the inner/outer races in each element (Figure 3(b)), the theory proposed here is similar to that presented in reference [17], but is presented in a more concise matrix form. It also helps in demonstrating the symmetry of the stiffness matrices and is more conducive to the implementation in continuation techniques [25] which are for parametric studies.
Ball bearings have two contact angles (Figure 4): (1) α_0 which is the undeformed contact angle (same for all elements) and (2) γ_j which is the deformed contact angle in the jth element. From the Hertzian theory the force in the jth element is

$$Q_j = \begin{cases} \kappa \delta_j, & \delta_j \geq 0, \\ 0, & \delta_j < 0. \end{cases}$$

(16)

where κ is the load-deflection coefficient, and δ_j is the normal compressional deflection in the jth element. For ball bearings, $\kappa \approx 3 \times 10^4$ N/m2 and $\gamma = 3/2$ where γ denotes order of magnitude.

The normal deflection may be expressed as

$$\delta_j = \sqrt{\xi_j^2 + \eta_j^2} - b_0 = b_j - b_0 = n_j e_j - b_0$$

(17)

where ξ_j and η_j are the radial and axial deflections respectively and b_0 is the undeformed distance between raceway centers of curvature:

$$e_j = \begin{pmatrix} \xi_j \\ \eta_j \end{pmatrix} = b_0 \begin{pmatrix} \cos \alpha_0 \\ \sin \alpha_0 \end{pmatrix} + \begin{pmatrix} \delta_j \\ \delta_\alpha \end{pmatrix} = b_0 n_0 + \Gamma_{\cdot0}^\top \Lambda_j = b_j n_j$$

(18)

Here δ_j and δ_α represent the radial and axial displacements of the jth element, respectively. Furthermore, n_0 and n_j are the unit vectors parallel to the undeformed and deformed lines of contact, respectively. Moreover, $\Lambda_j = \{\delta_x, \delta_y, \delta_z, \beta_x, \beta_y\}$ are the relative displacements.

Figure 7: Comparison of ball bearing stiffnesses calculated via prior technique and new static synthesis procedure for massive plate. Variation is shown versus axial loading, F_z; no radial loading, F_y, is present. (a) Radial stiffness, K_{u_x}, (b) moment stiffness, $K_{u_xu_x}$, (c) moment coupling stiffness, $K_{u_xu_x}$. Key: ——, prior techniques [17–21]; ○○○○, proposed technique.
across the \(j \)th element in global Cartesian co-ordinates, and similarly \(\mathbf{F}_j = \{F_x, F_y, F_z, M_x, M_y, M_z\}^T \) is the generalized force vector for the \(j \)th element. Note that \(\theta_i \) is not included since bearings are considered ideally not to oppose torsional rotations of the shaft \((M_z = 0) \). Consequently, in assembling the reaction forces and stiffness matrix for the entire structure, the bearing contributes nothing to the dimensions associated with \(M_z \) and \(u_z \).

The transformation matrix between the local (radial, axial) co-ordinates and the global co-ordinates is given by

\[
\mathbf{\Gamma}_j = \begin{bmatrix}
\cos \psi_j & 0 & 0 \\
\sin \psi_j & 0 & 0 \\
0 & 1 & 0 \\
0 & r_p \sin \psi_j & 0 \\
0 & -r_p \cos \psi_j & 0
\end{bmatrix},
\]

where \(\psi_j \) denotes the angle in the \(x-y \) plane which characterizes the position of the \(j \)th element (Figure 4).

The reaction forces in the bearing can be written as

\[
\mathbf{F}_j = Q_j \mathbf{\Gamma}_j \mathbf{n}_j = \kappa \delta^T \mathbf{H}_0,
\]

where \(\mathbf{H}_0 \) represents the transformation from the normal (deformed) direction on the \(j \)th element to the global cartesian components. Since the bearing force vector is non-linear, it must be linearized to obtain the elements of the stiffness matrix. By assuming that the mean loads are larger than the alternating loads, this linearized mean stiffness should yield a good approximation to the stiffness even under dynamic excitation. Consequently, the bearing stiffness of the \(j \)th element is given by

\[
K_j = \frac{1}{F_j} \mathbf{n}_j \mathbf{n}_j^T + \left(g \delta^T \mathbf{n}_j \right) \left(g \delta^T \mathbf{n}_j \right)^T = \mathbf{H}_0^T, \quad (23)
\]

which is symmetric and where \(\gamma = b_j / \delta_j \). The stiffness matrix above represents the stiffness of the \(j \)th ball in terms of the global Cartesian co-ordinates. If the \(j \)th element is not in compression, then \(K_j \) is an empty matrix due to equation (16). Since this stiffness is in the global co-ordinates, the stiffness of the entire bearing may be expressed as the simple summation of the element stiffnesses without any further transformation, i.e., \(\mathbf{K} = \Sigma_{j=1}^N K_j \).

5. TREATMENT OF HOLES IN AN ELASTIC PLATE

In previous papers [9, 26] by Rook and Singh, the calculation of vibratory power flows through joints was facilitated by a component synthesis technique. Since the joints considered were linear, the primary difficulty was ensuring that modal truncation effects were minimized. However, as seen in the previous section, bearings may be thought of as a non-linear joint which adds another level of complexity. As a result, the component
synthesis technique of references [9, 26] must be augmented with a static synthesis technique to iteratively solve for the operating point of the bearing in the context of the assembly as shown in Figure 5. However, as stated in section 4, it will be assumed that the dynamic deflections are much smaller than the static deflections so that dynamically the system behaves linearly, thereby restricting the non-linearity to the static analysis for the sole purpose of estimating flexibility or stiffness terms.

If the geometric dimensions of the bearings are very small compared to the plate flexural wavelengths at low frequency, then it is reasonable to collapse the bearing onto a single point. The nodes connected by the bearing stiffness matrix must be coincident to prevent rotations from inducing translations which ensures that the torsional DOF are unconstrained. However, if the bearings are large in size compared to the plate, the holes significantly alter the dynamics of the plate, and therefore this effect must be modelled. The bearing nodes must again be coincident at the center of the shaft and hole. But the plate nodes now form a locus of points positioned at a finite (non-zero) radius from the hole center and these bearing nodes. Therefore the center and periphery nodes must be physically connected. This connection is achieved with rigid (say 100 times more stiff than surroundings) beam elements (one at each rolling element’s angular position, ψ) such that the displacements of the plate are equal to those at the center of the hole (but not on the shaft).

In the previous section it was shown that the bearing stiffnesses vary with mean reaction load (23). The new procedure presents an improvement over previous studies [16–21] which calculate the bearing stiffnesses by fixing the outer raceway. This assumption may be

![Figure 8. Comparison of ball bearing stiffnesses calculated via prior technique and new static synthesis procedure for compliant plate. Variation is shown versus axial loading, F_z, at end of shaft; no radial loading, F_y, is present. (a) Radial stiffness, K_{uy}, (b) moment stiffness, K_{ux}, (c) moment coupling stiffness, K_{uyu}. Key as Figure 7.](image-url)
reasonable for fairly rigid casings, but it may be questionable for compliant casings which are being considered. When the hole is finite, all the rolling element forces act on the source but they act individually on the plate nodes, i.e. u_s and u_b are of different dimensions:

$$\mathbf{R} = \begin{bmatrix} \mathbf{K}^e & \mathbf{K}^{eb} & 0 \\ (\mathbf{K}^{eb})^T & \mathbf{K}^b & 0 \\ 0^T & 0^T & \mathbf{K}_c \end{bmatrix} \begin{bmatrix} \mathbf{u}^e \\ \mathbf{u}^{eb} \\ \mathbf{u}^b \end{bmatrix} + \begin{bmatrix} -\mathbf{F}_c \\ \mathbf{F}_b \\ \mathbf{F}_s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{R} = \mathbf{K} \mathbf{u} + \mathbf{F}. \quad (24a, b)$$

In the above equations, the source (s) and receiver (c) contributions may be obtained via a “super-element” or via the Guyan reduction technique. For example, the interface degrees of freedom (DOF) are retained as the only master DOF, with the internal DOF becoming the slave DOF. Since the static bearing forces are non-linear with respect to the relative static displacements across the rolling elements, it is convenient to repose the equations in terms of these relative quantities. Consequently, the displacement and force vectors of (24) are rewritten as

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_s \\ \mathbf{u}_b \\ \mathbf{u}_c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & L & 1 \end{bmatrix} \begin{bmatrix} \mathbf{u}^e \\ \mathbf{u}^{eb} \\ \mathbf{u}^b \end{bmatrix} = \Gamma \Lambda,$$

$$\mathbf{F} = \begin{bmatrix} -\mathbf{F}_c \\ \mathbf{F}_b - \mathbf{F}_s \\ \mathbf{F}_e \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -L^T \end{bmatrix} \begin{bmatrix} -\mathbf{F}_c \\ \mathbf{F}_b \\ \mathbf{F}_e \end{bmatrix} = (\Gamma^T)^{-1} \mathbf{G}.$$

Figure 9. Comparison of ball bearing stiffnesses calculated via prior technique and new static synthesis procedure for massive plate. Variation is shown versus radial loading, F_y, at end of shaft; constant axial loading, F_z, is also present; (a) radial stiffness, K_{eix}, (b) moment stiffness, K_{eix}, (c) moment coupling stiffness, K_{eix}. Key as Figure 7.
where
\[\Delta = \{\Delta_1^T, \ldots, \Delta_N^T\}^T, \quad \Delta = u - L\theta, \quad L = [I, \ldots, I]^T, \quad F_r = \{F_{r1}^T, \ldots, F_{rN}^T\}^T. \]

Thus the transformed residual becomes
\[\Gamma^T \mathcal{R} = \Gamma^T K_e \Gamma \Delta + G_e = \{0, 0, 0\}^T, \]
\[\Gamma^T \mathcal{R} = \begin{bmatrix} K^e_v & K^e_{vl} & 0 \\ (K^e_{vl})^T & K^e_{ll} + L^T K_e L & K_e L \\ 0^T & (K_e L)^T & K_e \end{bmatrix} \begin{bmatrix} u_e \\ u_l \\ \Delta \end{bmatrix} + \begin{bmatrix} -F_v^e \\ -F_{vl}^e \\ F_e \end{bmatrix}. \]

The linearized equations are
\[\frac{\partial}{\partial \Delta} (\Gamma^T \mathcal{R}) = \Gamma^T K_e \Gamma + \frac{\partial G_e}{\partial \Delta} = \begin{bmatrix} K^e_v & K^e_{vl} & 0 \\ (K^e_{vl})^T & K^e_{ll} + L^T K_e L & K_e L \\ 0^T & (K_e L)^T & K_e \end{bmatrix}, \]

where the bearing stiffnesses \(K_e = \text{diag}(K_1, \ldots, K_N) \), can be readily obtained from the above equation once the Newtonian iteration has converged. Since the symmetry in equation (20) has been preserved and since \(K_e \) is symmetric, the Jacobian will also be symmetric which will allow one to use specialized decomposition routines in order to achieve significant computational savings. For the case of very small holes the above

Figure 10. Comparison of ball bearing stiffnesses calculated via prior technique and new static synthesis procedure for compliant plate with radial and axial loading: (a) radial stiffness, \(K_{v1} \), (b) moment stiffness, \(K_{vl} \), (c) moment coupling stiffness, \(K_{v2l} \). Key as Figure 7.
procedure may be simplified by collapsing the rolling element locations onto a single node. This modification is realized by letting \mathbf{u}_c be a vector containing the six DOF of the single bearing node, and replacing \mathbf{L} with an identity matrix \mathbf{I} of dimension 6.

The above technique is illustrated in the following discussion utilizing a plate–beam structure with a 114.3 mm \times 228.6 mm \times 6.35 mm aluminum plate and a 19 mm diameter and 200 m long beam (Figure 6 and Table 1). The use of the static synthesis procedure, in conjunction with the rolling element bearing theory is very promising as seen in Figure 7. Here the original estimates of the ball bearing stiffnesses and those calculated using the new procedure are compared. For this example, only an axial period, F_z, is applied. As expected, there is no difference between the plate and the shaft since they are very stiff in this case. However when the plate and shaft are more compliant, the bearing stiffness values decrease as seen in Figure 8. This decrease is due to the fact that now there are conceptually three springs in series (shaft–bearing–plate) which lowers the displacements across the bearing, and hence makes it more compliant. In Figure 9, a radial preload, F_y, (transverse to the shaft) is present in addition to the axial preload. Again for the fairly rigid plate and shaft system, the synthesis result matches well with the original theory. However, for this combined loading situation, there is significant difference (up to 10%) between the two methods when the plate and shaft are fairly compliant (Figure 10). In particular, the difference in the moment coupling term in light of its importance in power
transmission (Figure 10c) is reason enough to use the new procedure. Figure 11 compares the calculated power using the proposed bearing linearization versus the prior method and shows considerable difference across the entire frequency range between the results of the two methods.

Though not shown here, the results of the synthesis procedure for finite holes approach those for point holes in the limit as the hole radius goes to zero, as expected. In general, one may state that use of the new static synthesis procedure for practical structures becomes important when either the hole size is significant and the plate is compliant or there is combined loading on the system (i.e., axial and radial preloads).

6. STRUCTURAL INTENSITY

Before investigating the intensity and dissipation patterns for the whole assembly as given by equations (7) and (12), these should be illustrated first for the individual free receiver component plate mode shapes. Using these modal patterns will help later in interpreting results of the assembly. Consider the plate–beam structure with the small hole and with a transverse excitation \(F_y = 1 \cdot 0 \) at the free end of the beam. The plate considered will be a fully clamped plate to emphasize the capability of the present approach over previous methods, many of which required the closed form solution of a simply supported plate.

![Figure 12. Power flows in plate–beam structure with plate clamped on all edges. (a) Effect of modal truncation: \(-\), no truncation \((N_s = 50, N_c = 115) \); \(-\), \(N_s = 30, N_c = 70 \); \(-\), \(N_s = 10, N_c = 25 \). (b) Modal dissipation efficiencies of receiver plate: \(-\), first elastic mode; \(-\), second elastic mode; \(-\), third elastic mode. Here \(N_s \) denotes number of modes retained in the source structure (beam) and \(N_c \) denotes number of modes retained in the receiver structure (plate).](image-url)
The plate is modelled such that all of the edges are resting on stiffness supports; the springs are 100 times stiffer than the adjoining structure and are connected to all DOF along these edges. The effect of modal truncation upon the system input power is shown in Figure 12(a). One can see that the algorithms outlined in a previous paper [26] are very successful in minimizing modal truncation effects, even for very severe truncation. Figure 12(b) shows the modal dissipation efficiencies of the receiver plate for this case. Only the three modes which contribute the most over this frequency range are shown for the

![Modal amplitude](image1)

![Dissipated power](image2)

![Modal amplitude with strain energy contours](image3)

Figure 13. Characteristics of first elastic plate mode (clamped on all edges); see Figure 12: (a) mode shape, (b) power dissipation density, (c) structural intensity, (d) mode shape with strain energy contours (ANSYS).
sake of brevity; the modal analysis is not truncated to these three modes, rather the model has 35 modes (e.g., attachment and constrained modes [26]). Note that the second mode dissipates the most power over much of this frequency range. The reason will become apparent after the following discussion of Figures 13–15. Each of these figures show (a) the mode shape, (b) the power dissipation density \(p_d (\tilde{x}, \tilde{y}; \omega_n) \), (c) the structural intensity \(I(\tilde{x}, \tilde{y}; \omega_n) \) and (d) the strain energy, for each of the receiver modes shown in Figure 12(b). These plots clearly show the advantage of the spatial information yielded by such

![Figure 14](image-url)

Figure 14. Characteristics of second elastic plate mode (clamped on all edges); see Figure 12: (a) mode shape, (b) power dissipation density, (c) structural intensity, (d) mode shape with strain energy contours (ANSYS).
quantities. From Figures 13(b) and (d), one may see that the maximum modal power dissipation indeed coincides with the locations of maximum modal strain energy, i.e., at the anti-nodes of the mode shape. Also note that no power is dissipated at (or transmitted across) the fixed edges of the plate since $\dot{u} = 0$ at these boundaries. One should however recall that none of the power quantities are actually calculated on the boundary; rather they are calculated at interior points which may be arbitrarily near the boundary (nodes). The structural intensity pattern in Figure 13(c) shows that the intensity field vectors

Figure 15. Characteristics of third elastic plate mode (clamped on all edges); see Figure 12: (a) mode shape, (b) power dissipation density, (c) structural intensity, (d) mode shape with strain energy contours (ANSYS).
Figure 16. Response of system at 3200 Hz with plate clamped on all edges; see Figure 12: (a) displacement of plate, (b) power dissipation density, (c) structural intensity.

converge towards the power sinks, which are identified with Figures 13(a) and (b). Similar results are shown in Figure 14 for the second plate mode. Observing the mode shape in Figure 14(a) reveals why this mode dominates in terms of dissipation efficiencies (Figure 12(b)). In a previous paper [26], it was shown that for the plate–beam structure with a transverse excitation at the end of the source shaft, the moment path at the joint–receiver interface dominates. Consequently one expects that the receiver modes which exhibit non-zero rotations at this interface are more important, as is the case with the second mode here.

One may further notice that although the system is symmetric, some of the patterns exhibit a small amount of asymmetry. This asymmetry is likely due to the multiple numerical transformations required by our algorithm in order to minimize the modal truncation [26], which may somewhat degrade the symmetry in the computational process. It should be pointed out that even results from a heavily documented commercial software such as ANSYS [24] are sometimes slightly asymmetric for this problem (see Figures 14(d) and 15(d)).

The reason that the other two modes are significant at some frequencies is because they characterize high power dissipation in the vicinity of the plate center (joint location) which may occur in the plate–beam assembly. The response for the structure at 3200 Hz (Figure 16) demonstrates the high dissipation in the vicinity of the joint location.

7. CONCLUDING REMARKS

Two different static synthesis procedures were developed and comparatively evaluated. One approach treats the ball bearings as being localized at a single node, while the other considers the bearings to be installed in a finite hole. The latter approach proved to be essential in estimating the stiffnesses of rolling element bearings in the case of compliant plates with sizeable holes, particularly when vibratory power flow quantities are of interest.
An entirely new “post-processor” for structural intensity calculations in the context of the finite element method (FEM) has been developed which takes the form of an element structural intensity matrix (EIM) and element power dissipation matrix (EDM) for plate elements. With these elements, the intensity pattern may be computed for any structure modelled with plate elements in FEM. This development presents a distinct improvement since currently no such techniques are believed to be available in the literature; most of the calculation of intensities has been confined to very simple structures by using analytical solutions. This method has been shown to deal with plates (for both flexural and in-plane motions) with clamped rather than simply supported boundary conditions; the method has been successfully utilized with other boundary conditions in reference [27]. Furthermore, the benefits of using such quantities to diagnose locations of maximum power dissipation have been shown. As a consequence, the proposed techniques should assist an investigation that attempts to evaluate the effectiveness of localized or “patch” damping treatments [27, 28].

Future research may consider extension of the elemental intensity matrix and dissipation matrix to shell elements and their incorporation into existing commercial software. Tapered roller bearings should also be considered. Treating the bearings as parameter uncertainties characterized by probabilistic distributions [29] may be investigated. Furthermore, for the case where the alternating load may be of the same order of magnitude as the mean load, development of an iterative dynamic synthesis procedure (i.e., Newton–Raphson) for the non-linear bearings may be required to complement the static synthesis procedure.

ACKNOWLEDGMENT

This research has been supported by the Army Research Office (URI Grant DAAL 03-92-G-0120; 1992–97; Project monitor; Dr. T. L. Doligalski).

REFERENCES

APPENDIX A: LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>damping matrix</td>
</tr>
<tr>
<td>D</td>
<td>flexural stiffness of plate</td>
</tr>
<tr>
<td>E</td>
<td>modulus of elasticity</td>
</tr>
<tr>
<td>f</td>
<td>frequency</td>
</tr>
<tr>
<td>F</td>
<td>force</td>
</tr>
<tr>
<td>G</td>
<td>shear modulus</td>
</tr>
<tr>
<td>h</td>
<td>thickness</td>
</tr>
<tr>
<td>H</td>
<td>co-ordinate transformation matrix</td>
</tr>
<tr>
<td>I</td>
<td>structural intensity</td>
</tr>
<tr>
<td>J</td>
<td>element intensity matrix (EIM)</td>
</tr>
<tr>
<td>k</td>
<td>stiffness</td>
</tr>
<tr>
<td>K</td>
<td>stiffness matrix</td>
</tr>
<tr>
<td>l</td>
<td>length</td>
</tr>
<tr>
<td>L</td>
<td>Boolean selection matrix</td>
</tr>
<tr>
<td>M</td>
<td>mass matrix</td>
</tr>
<tr>
<td>n</td>
<td>normal vector</td>
</tr>
<tr>
<td>N</td>
<td>number of modes retained in modal synthesis</td>
</tr>
<tr>
<td>p</td>
<td>dissipated power density</td>
</tr>
<tr>
<td>P</td>
<td>power flow</td>
</tr>
<tr>
<td>q</td>
<td>force per unit volume</td>
</tr>
<tr>
<td>Q</td>
<td>non-linear restoring force</td>
</tr>
<tr>
<td>R</td>
<td>radius</td>
</tr>
<tr>
<td>S</td>
<td>shape functions</td>
</tr>
<tr>
<td>Symbols</td>
<td>Definitions</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>(t)</td>
<td>time</td>
</tr>
<tr>
<td>(u)</td>
<td>displacement in (x) direction</td>
</tr>
<tr>
<td>(\mathbf{u})</td>
<td>vector of displacements</td>
</tr>
<tr>
<td>(v)</td>
<td>displacement in (y) direction</td>
</tr>
<tr>
<td>(V)</td>
<td>volume</td>
</tr>
<tr>
<td>(w)</td>
<td>displacement in (z) direction</td>
</tr>
<tr>
<td>(x, y, z)</td>
<td>spatial co-ordinates</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>contact angle</td>
</tr>
<tr>
<td>(\beta)</td>
<td>length ratio</td>
</tr>
<tr>
<td>(\delta)</td>
<td>relative displacement</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>relative displacement vector</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>strain</td>
</tr>
<tr>
<td>(\phi)</td>
<td>phase angle</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>modal vector (eigen-vector) matrix</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>relative rotational angle</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>transformation matrix</td>
</tr>
<tr>
<td>(\eta)</td>
<td>dissipation factor; axial displacement</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>load deflection coefficient</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>eigenvalue</td>
</tr>
<tr>
<td>(\theta)</td>
<td>angular or rotational displacement</td>
</tr>
<tr>
<td>(\rho)</td>
<td>mass density</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Poisson's ratio</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Gauss integration weighting factors</td>
</tr>
<tr>
<td>(\omega)</td>
<td>circular frequency</td>
</tr>
<tr>
<td>(\xi)</td>
<td>non-dimensional length</td>
</tr>
<tr>
<td>(\Xi)</td>
<td>modal dissipation matrix</td>
</tr>
<tr>
<td>(\psi)</td>
<td>angular position of bearing element</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>damping ratio</td>
</tr>
<tr>
<td>(\mathcal{R})</td>
<td>residual</td>
</tr>
</tbody>
</table>

Superscripts
- \(\text{b} \): boundary degrees of freedom
- \(\text{B} \): bending component
- \(\text{d} \): dissipated
- \(\mathbb{H} \): Hermitian
- \(\mathbb{I} \): interior degrees of freedom
- \(\mathbb{I} \): in-plane component
- \(\mathbb{T} \): transmitted
- \(\mathbb{T} \): transpose
- \(x \): \(x \) component
- \(y \): \(y \) component
- \(\bar{\cdot} \): complex quantity
- \(\tilde{\cdot} \): non-dimensional quantity

Subscripts
- \(c \): receiver
- \(e \): excitation
- \(j \): index
- \(m \): index
- \(p \): path/joint
- \(s \): source
- \(0 \): undeformed case

Operators
- \(\text{diag} \): diagonal matrix
- \(\text{Re} \): real part
- \(\text{Im} \): imaginary part
- \(* \): conjugate
- \(\mathcal{O} \): order of magnitude
- \(\dot{\cdot} \): differential operator for strains
- \(\dot{u} \): time derivative of \(u \)
- \(\nabla \): gradient
- \(\langle \cdot \rangle \): time average

Abbreviations
- DOF: degrees of freedom
- EDM: element dissipation matrix
- EIM: element intensity matrix
- FEM: finite element method