INCLUSION OF MEASURED FREQUENCY- AND AMPLITUDE-DEPENDENT MOUNT PROPERTIES IN VEHICLE OR MACHINERY MODELS

T. JEONG AND R. SINGH

Acoustics and Dynamics Laboratory, Department of Mechanical Engineering and The Center for Automotive Research, The Ohio State University, Columbus, OH 43210-1107, U.S.A.

(Received 2 December 1999, and in final form 5 June 2000)

This article proposes several new or refined analytical methods for vehicle or machinery system models that include measured dynamic stiffness of vibration isolators or mounts. Complications arising due to the spectrally varying and/or amplitude-dependent parameters are categorized, and the associated eigenvalue and frequency response problems are defined. First, the real and complex eigenvalue problems that include both viscous and visco-elastic damping models are critically examined and illustrated via examples. Second, a non-linear eigenvalue problem is formulated and the resulting eigensolutions are determined for a two-degree-of-freedom system with frequency-dependent elastic and dissipative parameters. Several approximate methods, including the modal expansion method, are also proposed to calculate the forced harmonic response, and their solution errors are assessed. Third, a quasi-linear method is applied to a 1/2 car model, using measured data of a typical hydraulic engine mount, to see the effect of excitation amplitude-dependent dynamic stiffnesses. Finally, a refined non-linear, frequency domain synthesis method is proposed that includes local non-linearities in the form of measured dynamic stiffness data. The forced harmonic response of the overall system is obtained, and comparing to the corresponding time domain method for a specific 1/4 car vehicle model validates it.

© 2001 Academic Press

1. INTRODUCTION

Stiffness and damping rates of practical elastomeric isolators, hydraulic mounts and the like depend on frequency and amplitude of the dynamic excitation, temperature, visco-elastic material or fluid properties, geometrical shape factors, static preload, and even the duration of time under which mounts have been operated [1–3]. Since these properties are difficult to analytically predict, experimental methods must be often adopted for the dynamic characterization or system identification [4–6]. One most common method is the electrohydraulic dynamic (non-resonant) test system that determines the dynamic stiffness \(K_d(\omega, X) = \frac{F_T}{X} \) at given excitation frequency \(\omega \) (rad/s) and displacement amplitude \(X \), while being subjected to a specific static load \(\bar{f} \) or displacement as shown in Figure 1 [7, 8]. Here, \(\sim \) denotes a complex-valued quantity and the \(e^{i\omega t} \) form is used for harmonic signals since sub- and super-harmonics are usually ignored in experimental tests. The measured spectra like those shown in Figure 2 form the basis of design work in most applications including the automotive systems. One may also employ the Voigt model approximation to find equivalent stiffness \(k \) and viscous damping coefficient \(c \) as a function of \(\omega \) for any given \(X \) [9, 10]. However, such spectrally varying properties pose difficulties since the common analytical tools and computational methods are based on the linear...
time-invariant (LTI) system theory, and the formulations require spectrally invariant values of parameters.

This article intends to develop several analytical methods that may permit the inclusion of $\bar{K}_d(\omega, X)$ data in lumped parameter-type dynamic simulation models. Several types of the visco-elastic eigenvalue and frequency response problems will be proposed, and examples include both machinery and vehicle models that incorporate $\bar{K}_d(\omega, X)$ data.
2. PROBLEM FORMULATION

2.1. CLASSIFICATION OF PROBLEMS

The concept of complex dynamic stiffness has been used for over five decades to describe the dynamic behavior of materials and vibration control devices [10–12] since Kimball and Lovell suggested the concept of solid damping in 1927 [13]. Elastomeric isolators, free layer or constrained layer damping treatments, hydraulic mounts and the like often exhibit frequency- and amplitude-dependent behavior. The dry friction and hysteretic damping type phenomena have also been characterized in a similar manner [9, 14–16]. Table 1 summarizes five fundamental problems that are of interest, and each has been discussed in the existing literature to some extent. The following expression may be used to define the stiffness modulus $|\tilde{K}_d| = K'_d\sqrt{1 + \eta^2}$ and loss angle $\phi_K = \tan^{-1}\eta$, where K' is the storage stiffness, K'' is the loss stiffness and η is the loss factor:

$$\tilde{K}_d(\omega, X) = K'_d(\omega, X) + iK''_d(\omega, X)[1 + i\eta(\omega, X)] = |\tilde{K}_d(\omega, X)|e^{i\phi_K(\omega, X)}.$$

(1)

Note that two definitions have been used in the literature to define the dynamic stiffness term. The first definition deals with the \tilde{K}_d concept that is shown in Figure 1(a) and via equation (1). The second definition is employed in conventional analytical, computational or experimental vibration or modal analysis where the dynamic stiffness or system matrix for the LTI system is defined as $D = K_y - \omega^2M + i\omegaC$, where K_y, M and C are static stiffness, mass and viscous damping matrices [17]. Both will be used in our analysis.

Specific visco-elastic models may be also employed in developing the classifications of Table 1. Relevant problems will be discussed further in subsequent sections, along with an appropriate review of literature. (Given the comprehensive scope of inquiry, only representative articles will be cited.)

Physical mechanisms that generate frequency- and amplitude-dependent properties in real-life devices and materials differ but their manifestations in the frequency domain may be similar in nature. Also, users may substitute one device or material over the other, often relying on the measured properties. Yet another issue is the variation of system parameters with respect to ω or X. For example, expand $K'_d(\omega, X)$ or $\eta(\omega, X)$ using the

Table 1

Classification of relevant problems

<table>
<thead>
<tr>
<th>Given</th>
<th>Dynamic system type</th>
<th>Typical examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K'_d \neq K''_d(\omega, X)$</td>
<td>Linear time-invariant system</td>
<td>Metallic mounts and structures [5]</td>
</tr>
<tr>
<td>$\eta \neq \eta(\omega, X)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K'_d = K''_d(\omega)$</td>
<td>Linear system with spectrally varying properties</td>
<td>Visco-elastic damping layers [12]</td>
</tr>
<tr>
<td>$\eta = \eta(\omega)$</td>
<td></td>
<td>Laminated composite panels [15]</td>
</tr>
<tr>
<td>$K'_d = K'(\omega, X_o)$</td>
<td>Quasi-linear system</td>
<td>Assumed model for non-linear mounts [8]</td>
</tr>
<tr>
<td>$\eta = \eta(\omega, X_o)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K'_d = K'(\omega, X_o)$</td>
<td>Non-linear system with spectrally invariant properties</td>
<td>Systems with clearances [18]</td>
</tr>
<tr>
<td>$\eta = \eta(X)$</td>
<td></td>
<td>Continuous non-linearities (hardening or softening springs) [19]</td>
</tr>
<tr>
<td>$K'_d = K'_d(\omega, X)$</td>
<td>Non-linear system with spectrally varying properties</td>
<td>Hydraulic mounts [8]</td>
</tr>
<tr>
<td>$\eta = \eta(\omega, X)$</td>
<td></td>
<td>Powertrain clutches [20]</td>
</tr>
</tbody>
</table>

K'_d = storage stiffness; η = loss factor; ω = frequency (rad/s); X = excitation amplitude.
Taylor series

\[
K_d'(\omega, X) = K_d(\omega_0, X_0) + (\omega - \omega_0) \left. \frac{\partial K_d'}{\partial \omega} \right|_{\omega = \omega_0} + (X - X_0) \left. \frac{\partial K_d'}{\partial X} \right|_{\omega = \omega_0} + O(\Delta \omega^2, \Delta X^2).
\]

(2)

This illustrates that if changes are rather small, then one may develop suitable analytical approximations. Figure 2, however, shows that changes with \(\omega\) and \(X\) are rather large since \(K_d(\omega, X)\) varies from 300 to 780 N/mm in modulus and from 2 to 38 in loss angle. Mostly frequency variations will be discussed in this article though amplitude-dependent cases are also addressed.

2.2. SCOPE AND OBJECTIVES

The scope of this article is limited to the frequency domain analysis, and only lumped parameter models will be employed to illustrate the issues and methodology. Specific objectives are as follows. (1) Clarify and formulate various types of eigenvalue problems including the non-linear case given \(\tilde{K}_d = \tilde{K}_d(\omega)\), and examine the resulting real or complex eigensolutions. (2) Examine the validity of the modal expansion method for frequency response calculations for various cases of \(\tilde{K}_d(\omega)\). (3) Determine the applicability of using quasi-linear system models that may incorporate measured data \(K_d(\omega, X)\). (4) Propose a refined synthesis method to obtain the forced harmonic response when \(\tilde{K}_d(\omega, X)\) type properties are included in a system model.

The generic machinery isolation system of Figure 3 will be examined first to illustrate the analytical procedures and applications to machinery problems. Figure 1(a) and 4 illustrate vehicle models that will be employed as examples. In Figure 1(a), only the vertical motions are calculated, and the engine is described by a rigid mass \(m_e\). The chassis may be modelled by a linear Voigt model (as shown) or by alternate formulation in terms of equivalent mass \(M_c\), viscous damping \(C_c\) and stiffness \(K_{sc}\) matrices. Figure 4 shows the 1/2 car model where different degrees of freedom (d.o.f.) may be assigned. In our example, this will be a six-d.o.f. system since only the vertical displacements are chosen.

One key issue that will be discussed later can be illustrated via the vehicle model of Figure 1(b) where \(x(t)\) corresponds to \(q_e(t) - q_c(t)\) of Figure 1(a). Both \(q_e\) and \(q_c\) need to be solved for in a simulation program but if the measured mount data were to be included in terms of \(\tilde{K}_d(\omega, X)\), numerical iterations are necessary. It should be also pointed out that true non-linear analyses are very difficult since the experimental procedures provide only the “black-box” information, primarily in the frequency domain, while ignoring sub- and super-harmonics [10].

3. LTI VISCO-ELASTIC MODELS

3.1. LITERATURE REVIEW

The single-d.o.f. viscous damping models have often been used to analyze the solid damping phenomena, based on the energy-equivalent viscous damping coefficient concept, even though the dynamic response of the system may be quite different [15]. To overcome this discrepancy, dynamic stiffness \(\tilde{K}_d\) formulation [9, 11, 21] may be used to model the solid, structural, hysteric, or visco-elastic dampings. However, the employment of \(\tilde{K}_d\) prevents one from analyzing the transient response of the system since the resulting time
Figure 3. Two degree-of-freedom machinery isolation system with visco-elastic elements as described by dynamic stiffnesses (\overline{K}_d). These are in parallel with static stiffness (k_s) and viscous damping (c_v) elements.

Figure 4. Simplified 1/2 car model. Degrees of freedom may be assigned depending on the frequency range of interest and analysis objective. Other versions such as 1/4 car model are subsets of this case. \overline{K}_d = measured dynamic stiffness (modulus and loss angle) at any given frequency.

Domain model is non-casual [22]. Hence, the \overline{K}_d concepts should only be used in the ω domain, and only the steady state responses must be sought. Such damping models may be extended to a multi-d.o.f. system and the associated eigenvalue problem can be formulated. The classical modal analysis method, based on the viscous damping assumption, is also applicable to structurally or visco-elastically damped system under certain conditions [16].
Voigt, Maxwell, or Burgers models are subsets of a more general linear visco-elastic model, which is usually defined by the \(n \)th order differential equation in terms of both dynamic displacement (or strain) and force (or stress) [9, 12]. Among them, the Voigt model is most widely used because of its simplicity [9, 10]. Hence, this article will only employ the Voigt-type model for multi-d.o.f. dynamic systems, when the need arises.

3.2. FORMULATION

3.2.1. LTI viscous damping models

Only harmonic excitation (\(f(t) = \tilde{f}_a e^{i \omega t} \)) and response (\(q(t) = \tilde{q}_a e^{i \omega t} \)) at \(\omega \) are considered in this study. The mass matrix \((M)\) is assumed to be spectrally invariant. The equations of motions for a discrete system of dimension \(N \) are

\[
M\ddot{q}(t) + C\dot{q}(t) + Kq(t) = f(t), \quad \left[-\omega^2 M + i\omega C + K \right] \tilde{q}_a(\omega) = \tilde{f}_a(\omega).
\]

When the system is undamped or proportionally damped, one can obtain real eigenvalues \((\lambda_r)\) and eigenvectors \((u_r)\) from the following well-known eigenvalue problem of the undamped system \([23]\):

\[
K_u u_r = \lambda_r M u_r, \quad \omega_r^2 = \lambda_r.
\]

Forced harmonic responses are then obtained by using the classical normal mode expansion method [23]. One may define \(C \) for the proportionally damped system by employing either the Rayleigh’s model [24] or Caughey’s [25] criterion as follows, where \(\alpha \) and \(\beta \) are scalar constants:

\[
C = \alpha M + \beta K, \quad CM^{-1}K = KM^{-1}C.
\]

When equation (5) is not satisfied, a new eigenvalue problem for the non-proportionally damped system must be formulated in the \(2N \) space, as given below. The corresponding eigensolutions \((\tilde{\lambda}_r, \tilde{\omega}_r)\) are complex valued \([26, 27]\):

\[
A\ddot{y}(t) + By(t) = g(t), \quad y(t) = [\dot{q}(t) \ t q(t)]^T, \quad g(t) = [0 \ t f(t)]^T,
\]

\[
A = \begin{bmatrix} 0 & M \\ M & C \end{bmatrix}, \quad B = \begin{bmatrix} -M & 0 \\ 0 & K \end{bmatrix}.
\]

Forced harmonic responses of a non-proportionally damped system can also be obtained by using the generalized modal superposition method [26–28]. Basic steps include

\[
[i\omega A + B] \tilde{y}_a(\omega) = \tilde{g}_a(\omega), \quad \tilde{y}_a(\omega) = [i\omega \tilde{q}_a(\omega) \ t \tilde{q}_a(\omega)]^T,
\]

\[
\tilde{g}_a(\omega) = [0 \ t \tilde{f}_a(\omega)]^T, \quad B\tilde{\omega}_r + \tilde{\lambda}_r A\tilde{\omega}_r = 0, \quad \tilde{\omega}_r = [\tilde{\lambda}_r \ t \tilde{\omega}_r]^T.
\]

First, obtain the normal modal matrix \(\tilde{W} \) from \(\tilde{\omega}_r \) by solving equation (7d) and then calculate for the modal responses \(\tilde{p}_{n \omega a}(\omega) \) by uncoupling equation (7a) as follows:

\[
\tilde{y}_a(\omega) = \tilde{W}\tilde{p}_{n \omega a}(\omega),
\]

\[
\tilde{p}_{n \omega a}(\omega) = [\tilde{p}_{n1 a}(\omega) \ t \tilde{p}_{n2 a}(\omega) \ t \tilde{p}_{n2 N a}(\omega)]^T, \quad \tilde{p}_{n \omega a}(\omega) = \tilde{W}^T[\tilde{g}_a(\omega) / i\omega - \tilde{\lambda}_r].
\]
3.2.2. LTI visco-elastic damping models

For the visco-elastic materials, the dynamic stiffness matrix \(\mathbf{K}_d \) is usually expressed as follows to account for both elastic and dissipative properties: \(\mathbf{K}_d = \mathbf{K}^e_d + \mathbf{iK}^v_d \). Assume that \(\mathbf{K}^e_d \neq \mathbf{K}^e_d(\omega) \) and \(\mathbf{K}^v_d \neq \mathbf{K}^v_d(\omega) \). The governing frequency response equations for a system of dimension \(N \) are

\[
\begin{align*}
[- \omega^2 \mathbf{M} + \mathbf{K}_d] \ddot{\mathbf{q}}_d(\omega) &= \ddot{\mathbf{f}}_d(\omega), \\
\mathbf{D}(\omega) \ddot{\mathbf{q}}_d(\omega) &= \ddot{\mathbf{f}}_d(\omega), \\
\ddot{\mathbf{q}}_d(\omega) &= \mathbf{D}^{-1}(\omega) \ddot{\mathbf{f}}_d(\omega),
\end{align*}
\]

(9a–c)

\[
\mathbf{D}(\omega) = - \omega^2 \mathbf{M} + \mathbf{K}_d = - \omega^2 \mathbf{M} + \mathbf{K}_d^e + \mathbf{iK}_d^v.
\]

(9d)

First, assume that the system is proportionally damped such that \(\mathbf{K}_d^v = \eta \mathbf{K}_d^e \), where the loss factor \(\eta \) is a spectrally invariant scalar constant. Now define an eigenvalue problem by expressing \(\mathbf{q}(t) = \mathbf{u} e^{\mathbf{i} \omega t} \) for the undamped \((\mathbf{K}_d^e = 0) \) and unforced \((\ddot{\mathbf{f}}_d(\omega) = 0) \) system in equation (9a). This yields an equation like equation (4) where \(\mathbf{K}_d \) is replaced by \(\mathbf{K}_d^e \). The real eigenvector \(\mathbf{u} \) must satisfy the orthogonal relations with respect to \(\mathbf{M} \) and \(\mathbf{K}_d^e \) [25]. Second, consider the case when this system is non-proportionally damped. Now employ the complex-valued terms \(\ddot{\omega}_r, \ddot{\lambda}_r, \ddot{\mathbf{u}} \), and \(\ddot{\mathbf{K}}_d \) and rewrite equation (4) as follows:

\[
\ddot{\mathbf{K}}_d \ddot{\mathbf{u}} = \ddot{\lambda}_r \mathbf{M} \ddot{\mathbf{u}}, \\
\ddot{\lambda}_r = \lambda^e_r + i\lambda^v_r = \ddot{\omega}^2_r, \\
\ddot{\omega}_r = \omega^e_r + i\omega^v_r, \\
\omega^e_r = \sqrt{\lambda^e_r + \sqrt{\lambda^2_r + \lambda^2_{r1}}}, \\
\omega^v_r = \sqrt{-\lambda^v_r + \sqrt{\lambda^2_r + \lambda^2_{r1}}},
\]

(10a–c)

Kung and Singh [29] have utilized this eigenvalue formulation for damped beams and found excellent correlations with modal experiments. Unlike the non-proportional viscous damping case given by equations (6) and (7), the complex eigenvalue problem of equation (10) does not need to be transformed into the 2N-dimensional space. Also note that eigenvectors \(\ddot{\mathbf{u}} \) still satisfy the following orthogonal relationship:

\[
\ddot{\mathbf{u}}^T \mathbf{M} \ddot{\mathbf{u}}_j = \delta_{ij}, \\
\ddot{\mathbf{u}}^T \ddot{\mathbf{K}}_d \ddot{\mathbf{u}}_j = \ddot{\lambda}_r \delta_{ij}, \\
r, j = 1, \ldots, N,
\]

(11a,b)

where \(\delta_{ij} \) is the Kronecker delta function. Note that the transpose of \(\ddot{\mathbf{u}} \) is taken here instead of employing the Hermitian eigenvector \((\ddot{\mathbf{u}}^H) \), that is used for the orthogonal relationships for an undamped system given by equation (4), i.e., \(\ddot{\mathbf{u}}^H \mathbf{M} \ddot{\mathbf{u}}^H = \delta_{ij} \). Using the orthogonal properties as given by equation (11) and the normal modal matrix \(\ddot{\mathbf{U}} \), the harmonic response amplitude vector \(\ddot{\mathbf{q}}_d(\omega) \) is obtained by the modal superposition method,

\[
\ddot{\mathbf{q}}_d(\omega) = \ddot{\mathbf{U}} \ddot{\mathbf{p}}_d(\omega),
\]

(12)

where \(\ddot{\mathbf{p}}_d(\omega) \) is the response in modal co-ordinates. Equations (9c) and (12) should yield identical answers unless modal truncation errors are present.

3.2.3. Combination of viscous and visco-elastic damping models

When both viscous and visco-elastic damping elements are present within a system, the equations of motion must be expressed only in the \(\omega \) domain as

\[
[- \omega^2 \mathbf{M} + \omega \mathbf{C} + \mathbf{K}_d + \mathbf{iK}_v^e + \mathbf{iK}_v^v] \ddot{\mathbf{q}}_d(\omega) = \ddot{\mathbf{f}}_d(\omega).
\]

(13)
Four approximate methods will be proposed in this article in order to solve equation (13). First, consider the Type I model that consists of both Rayleigh’s viscous damping model of equation (5a) and the visco-elastic material model \((K''_s = \eta K''_d) \) where \(\eta \) is scalar. Assume that \(K_s = \Gamma_{sd} K'_d \), where \(\Gamma_{sd} \) may be called as a scaling factor that relates static and dynamic storage stiffnesses. Such a combined model should yield real eigensolutions based on the eigenvalue problem

\[
(K_s + K'_d)u_r = \lambda_r M_r, \quad (1 + \Gamma_{sd})K'_d u_r = \lambda_r M u_r. \tag{14a,b}
\]

Transforming equation (13) into the modal domain by using \(u_r \) from equation (14), one can obtain the modal response as

\[
\tilde{p}_{rd}(\omega) = \frac{u_r^T \tilde{f}_d(\omega)}{\omega_r^2 - \omega^2 + i[\omega \omega_r + \omega_r^2 (\eta + \beta \Gamma_{sd} \omega)/(1 + \Gamma_{sd})]}.
\]

Forced harmonic responses are then obtained by using equation (12). Note that normal modal matrix \(U \) is real-valued in this case.

The next three models, designated as Type II, III, and IV models, assume that

\[
\text{First, consider the Type I model that consists of both Rayleigh’s viscous damping model of equation (5a) and the visco-elastic material model (\(K''_s = \eta K''_d \)) where \(\eta \) is scalar. Assume that \(K_s = \Gamma_{sd} K'_d \), where \(\Gamma_{sd} \) may be called as a scaling factor that relates static and dynamic storage stiffnesses. Such a combined model should yield real eigensolutions based on the eigenvalue problem}
\]

\[
(K_s + K'_d)u_r = \lambda_r M_r, \quad (1 + \Gamma_{sd})K'_d u_r = \lambda_r M u_r. \tag{14a,b}
\]

\[
\text{Transforming equation (13) into the modal domain by using } u_r \text{ from equation (14), one can obtain the modal response as}
\]

\[
\tilde{p}_{rd}(\omega) = \frac{u_r^T \tilde{f}_d(\omega)}{\omega_r^2 - \omega^2 + i[\omega \omega_r + \omega_r^2 (\eta + \beta \Gamma_{sd} \omega)/(1 + \Gamma_{sd})]}.
\]

\[
\text{Forced harmonic responses are then obtained by using equation (12). Note that normal modal matrix } U \text{ is real-valued in this case.}
\]

The next three models, designated as Type II, III, and IV models, assume that \(K_s \neq \Gamma_{sd} K'_d \). Since the eigenvectors from equation (14) do not uncouple equation (13), the eigenvalue problem must include damping terms. This will result in a non-linear eigenvalue problem; such problems will be discussed in the next section. To avoid the non-linear eigenvalue problem, one may instead approximate eigensolutions by using equation (14) and calculate the forced harmonic response by neglecting the off-diagonal terms after the transformation of equation (13) into the modal domain. The model that uses this approach will be called Type II. One may also convert the viscous damping model to visco-elastic damping model by assuming the Voigt (or comparable) model. The contribution of \(C \), when converted into the visco-elastic damping model, is defined here as \(K''_{C_d} \). The resulting equivalent (or approximate) equations of motion for Type III model would be

\[
[- \omega^2 M + K'_{dc} + iK''_{dc}] \tilde{q}_d(\omega) = \tilde{f}_d(\omega), \quad K'_{dc} = K_s + K'_d, \quad K''_{dc} = K''_d + K''_{C_{d}}. \tag{16a–c}
\]

The eigenvalue problem of equation (16a) is constructed by replacing \(K_s \) with \(K'_{dc} + iK''_{dc} \) in equation (10a) and forced harmonic responses are obtained by using equations (16a), (12), and corresponding eigensolutions. The \(K''_{C_{d}} \) matrix is obtained as follows. Neglect visco-elastic terms of equation (13) and solve equation (4) to obtain \(\omega_r \) and the normal modal matrix \(U_s \). Then calculate the modal damping ratios \(\zeta_r = (\alpha/\omega_r + \beta/\omega_r)/2 \). The equivalent loss factor \(\eta_{er} \) is now calculated by using \(\eta_{er} = 2\zeta_r \). Construct \(K''_{C_{d}} \) as follows:

\[
K''_{C_{d}} = (U_s^T)^{-1} \begin{bmatrix} \eta_{er} \omega_r^2 & \cdots \\ \cdots & \cdots \end{bmatrix} U_s^{-1}. \tag{17}
\]

Similarly, one may convert the visco-elastic damping \(K''_{s} \) into the viscous damping model where its contribution is defined as \(C_{K''_{s}} \). The resulting equations for Model IV are

\[
[- \omega^2 M + i\omega C_c + K_{sc}] \tilde{q}_d(\omega) = \tilde{f}_d(\omega), \quad C_c = C + C_{K''_{s}}, \quad K_{sc} = K_s + K'_d. \tag{18a–c}
\]

\[
C_{K''_{s}} = (U_d^T)^{-1} \begin{bmatrix} 2 \zeta_{er} \omega_r & \cdots \\ \cdots & \cdots \end{bmatrix} U_d^{-1}. \tag{18d}
\]
In equation (18d), $\zeta_{cr} = \eta_2/2$ and ω_r and U_d are obtained by solving equation (4). Note that K_r should be replaced by K'_d. For the Type IV model, the eigenvalue problem of equation (18a) becomes equation (7d) when C and K_r are replaced by C_e and K_{se}, respectively. Using equations (7a) and (8), forced harmonic responses are calculated.

To assess the validity of approximations associated with Type II, III and IV models, one may define several criteria. For example, the error $e_d(\omega)$ will show how the approximate solutions $\ddot{u}_{m}(\omega)$ differ from the exact $\ddot{u}_{m}(\omega)$ solutions at any ω. One could also obtain a spectrally averaged value $\langle e(\omega) \rangle_\omega$ given N_ω frequency points:

$$e_d(\omega) = \frac{|\ddot{u}_{m}(\omega) - \ddot{u}_{m}(\omega)|}{|\ddot{u}_{m}(\omega)|}, \quad \langle e(\omega) \rangle_\omega = \frac{1}{N_\omega} \sum_{k=0}^{N_\omega-1} e(\omega_k). \quad (19a,b)$$

3.3. Examples

All four models of the previous section will be numerically examined through the machinery isolation system of Figure 3 that includes both viscous and visco-elastic elements. One may easily evaluate frequency response functions using equation (9c). The first example, with parameters of Table 2, considers a non-proportional visco-elastically damped system. The resulting eigensolutions are $\bar{u}_1 = [0.00929 - 0.0004i 0.0262 + 0.0008i]$T at $\omega_1 = 11.1 + 0.83i$ Hz and $\bar{u}_2 = [-0.0371 - 0.0011i 0.0657 - 0.0003i]$T at $\omega_2 = 18.3 + 1.5i$ Hz. These do satisfy equation (11). Further, harmonic responses using equation (12) exactly match with the exact ones given by equation (9c). The second example examines Type I model with parameters that are listed in Table 2. The results are $\bar{u}_1 = [0.00929 0.0261]^T$ at $\omega_1 = 13.6$ Hz and $\bar{u}_2 = [-0.0369 0.0657]^T$ at $\omega_2 = 22.3$ Hz. Again the modal superposition method using equation (15) yields the same spectra as the exact one given by equation (9c).

The remaining examples consider Type II, III, and IV models, and their parameters are adjusted by defining $k_{s2} = \Gamma_{sd2}K'_{d2}$. The type I model assumes that $\Gamma_{sd2} = 0.5$ but Γ_{sd2} is varied from 0.1 to 10 for the remaining models. The value of $k_{s2} + K'_{d2}$ is, however, retained to ensure that the undamped system is the same as Type I considered. To see the effect of damping, let $C = \sigma(zM + \beta K_d)$ and $K'_d = \sigma(\eta K'_d)$. Damping ratios ζ_r from the viscous

<table>
<thead>
<tr>
<th>Example</th>
<th>Other parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>$K'd_1 = \eta_1 K'd_1$, $K'd{12} = \eta_1 K'd{12}$, $K'd_2 = \eta_2 K'd_2$ $K'd{22} = 2000$ N/mm, $\eta_1 = 0.1$, $\eta{12} = 0.2$, $\eta_2 = 0.15$ $k{s1} = k{s12}$, $k{s2} = c_1 = c_{12} = c_2 = 0$</td>
</tr>
<tr>
<td>Second</td>
<td>$C = \alpha M + \beta K_d$, $\Gamma_{sd} K'_d$, $K'_d = \eta K'_d$ $K'd = 2000$ N/mm, $\alpha = 0.5$, $\beta = 10^{-3}$, $\Gamma{sd} = 0.5$, $\eta = 0.1$</td>
</tr>
<tr>
<td>Third to Fifth</td>
<td>$C = \sigma(zM + \beta K_d)$, $K'd = \sigma(\eta K'd)$, $k{s1} = \Gamma{sd} K'd{11}$, $k_{s12} = \Gamma_{sd} K'd{12}$, $k_{s2} = \Gamma_{sd2} K'd{22}$, $k_{s2} + K'd{22} = 3000$ N/mm $\Gamma_{sd} = 0.5$, $\Gamma_{sd2} = 0.1 \sim 10$, $\alpha = 0.5$, $\beta = 10^{-5}$, $\eta = 0.01$, $\sigma = 1, 10, or 100$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>System parameters for examples of section 3 with reference to Figure 3</td>
</tr>
</tbody>
</table>

$m_1 = 100$ kg, $m_2 = 200$ kg, $K'_{d1} = 200$ N/mm, $K'_{d12} = 400$ N/mm
damping model range from 0.27 to 0.73% for $\sigma = 1$ (lightly damped), 2.7 to 7.3% for $\sigma = 10$ (moderately damped), and 27 to 73% for $\sigma = 100$ (heavily damped). The results for the Type II model are shown in Figure 5. When $\Gamma_{sd} = 0.5$, $\langle \varepsilon_{q_2}(\omega) \rangle_\omega$ is zero as expected. But this approximation produces a rather large error for a heavily damped system. Yet it gives good results especially when Γ_{sd} is from 0.1 to 1.5 since $\langle \varepsilon_{q_2}(\omega) \rangle_\omega$ is less than 5%.

Figure 6 show the results for the Type III model. Even for $\Gamma_{sd} = 0.5$, $\langle \varepsilon_{q_2}(\omega) \rangle_\omega$ has non-zero values. In addition, overall errors are larger than those observed with the Type II model. To understand this, eigensolutions from both models are compared with the exact
Table 3

Comparison of eigensolutions for section 3 examples when $\beta_{sd2} = 0.1$ and $\sigma = 100$

<table>
<thead>
<tr>
<th>Mode</th>
<th>Model type</th>
<th>Natural frequency $\bar{\omega}$ (Hz)</th>
<th>Eigenvector \bar{u}_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>III</td>
<td>13.6</td>
<td>$[1 \ 0.28]^T$</td>
</tr>
<tr>
<td></td>
<td>Exact eigensolution</td>
<td>13.9 + 8.98i</td>
<td>$[1 \ 0.24 - 0.038i]^T$</td>
</tr>
<tr>
<td>2</td>
<td>III</td>
<td>22.3</td>
<td>$[0.56 \ 1]^T$</td>
</tr>
<tr>
<td></td>
<td>Exact eigensolution</td>
<td>23.6 + 13.0i</td>
<td>$[0.49 + 0.054i \ 1 + 0.030i]^T$</td>
</tr>
</tbody>
</table>

Figure 7. Error introduced by Type III model when equation (13) is used for the uncoupling procedure in the modal superposition method: $\sigma = 1$; $\sigma = 10$; $\sigma = 100$.

solutions which are obtained from the non-linear eigenvalue problem that is described in the next section. However, Table 3 shows that the Type III model better approximates eigensolutions than the Type II model does. This is due to the fact that equation (16a) is used for the uncoupling procedure in the modal superposition method which is an approximate version of equation (13), while the Type II model directly uses equation (13). Figure 7 confirms this finding when the Type III model employs equation (13) instead of equation (16a) based on the modal superposition method. Again for $\Gamma_{sd2} = 0.5$, $\langle \dot{e}_{qs}(\omega) \rangle_{\omega}$ is zero. Overall errors are about half of those observed for the Type II model.

Next, consider the Type IV model for the final example of Table 2. Results of Figure 8 indicate that the Type IV model predicts results comparable to those from the Type III model (see Figure 6). However, when the values of α and β are decreased by 50%, the Type III model performs much better as shown in Figure 9. Therefore, one may conclude that the Type III model is better suited as an approximation when the visco-elastic damping is more dominant than the viscous damping in a physical system; the Type IV model is recommended for the opposite case.
4. EXAMINATION OF PROBLEMS WITH SPECTRALLY VARYING PROPERTIES

4.1. LITERATURE REVIEW

Lumped parameter Voigt, Maxwell, or Burgers type models are often suggested to simulate the measured spectral properties employed to describe the dynamics of visco-elastic materials [9, 14]. For instance, Gaillard and Singh [20] have proposed several linear and non-linear models of automotive clutches that include both visco-elastic and dry friction elements. Predictions compare reasonably well with limited torsional vibration data even though the physical mechanisms are yet to be understood.

The frequency-dependent properties lead to a non-linear eigenvalue problem. Lin and Lim [30] have proposed a perturbation method that is used to find η of damping materials. Similarly, Kung and Singh [29] have assumed spectrally invariant loss factors only within certain frequency bands (say around the natural frequencies). Their formulations have been
successful in describing the modal behavior of beam and plates with multiple damping patches. Przemieniecki [31] has developed frequency-dependent mass and stiffness matrices in the finite element method (FEM) to improve accuracy and reduce the computations required to estimate natural frequencies and mode shapes of continuous linear elastic systems. Note that the frequency-dependent properties in FEM type problems arise due to the numerical discretization of the spectrally invariant continuous elastic structure, not from stiffness or damping element properties. Fergusson and Pilkey [17] have found relationships between the coefficients in the power series expansions for several types of structural matrices, facilitating a more systematic approach in using frequency-dependent structural matrices for FEM formulations. Recently, Brilla [32] has attempted to establish orthogonal properties for approximate eigensolutions using the Laplace transform method for visco-elastic problems. However, the fundamental properties of frequency-dependent visco-elastic materials are yet to be understood.

4.2. ANALYTICAL FORMULATION

The perturbation type approaches are obviously not applicable to hydraulic mounts and similar devices since their dynamic properties may vary significantly over the applicable range. For example, the stiffness modulus \(|\hat{K}_d|\) of a typical hydraulic engine mount could vary substantially, depending on \(\omega\) or \(X\) as evident from Figure 2. Another key characteristics of dynamic system with frequency dependent-stiffness is that in general the modal superposition method is not valid since the eigenvectors do not follow the conventional orthogonal relations [30]. This aspect alone produces some challenge in predicting the forced response of frequency-dependent structures using the experimentally measured modes. The feasibility of using the modal superposition method will be investigated for such a problem and the associated errors will be assessed to suggest some guidelines. For example, the method may be acceptable when the error is within 10%.

4.2.1. Non-linear eigenvalue problem

For a system with frequency-dependent visco-elastic stiffnesses, use the same governing equations as equation (9a) except now replace \(\hat{K}_d\) with \(\hat{K}_d(\omega)\). This yields a non-linear eigenvalue problem that can be seen from equation (10a) when \(\hat{K}_d\) is replaced by \(\hat{K}_d(\omega_R)\).

Rewrite them as follows:

\[
\begin{align*}
\left[-\omega^2M + \hat{K}_d(\omega) \right] \ddot{q}_d(\omega) &= \ddot{\hat{f}}_d(\omega), \\
\hat{K}_d(\omega_R)\ddot{u}_r &= \frac{\ddot{x}}{\hat{a}(\omega_R)}M\ddot{u}_r.
\end{align*}
\]

(20a,b)

As a special case, consider the following type of stiffness matrix:

\[
\hat{K}_d = \hat{a}(\omega)\hat{K}_{d_0}, \quad \hat{K}_{d_0} = \hat{K}_d(\omega_0),
\]

(21a,b)

where \(\hat{a}(\omega)\) is scalar and a function of \(\omega\) and \(\hat{K}_d(\omega_0)\) is evaluated at a reference frequency \(\omega_0\). Substitute equation (21a) into equation (20b) and obtain

\[
\hat{K}_{d_0}\ddot{u}_r = \frac{\ddot{x}}{\hat{a}(\omega_R)}M\ddot{u}_r.
\]

(22)

Hence, the frequency dependency affects only the eigenvalues while maintaining the same eigenvectors as those given by \(\hat{K}_d\ddot{u}_r = \ddot{x}M\ddot{u}_r\). Here, \(\ddot{u}_r\) satisfies the orthogonal relations given by equation (11). However, for the general case of \(\hat{K}_d = \hat{K}_d(\omega)\) the resulting eigen-vectors
\(\hat{u} \), from equation (20b) may not exhibit the orthogonality properties with respect to the \(M \) or \(\hat{K}_d(\omega) \) matrices.

Since equation (20) is non-linear, it is difficult to determine the number of eigenvalues it may have even though the dimension of \(M \) or \(\hat{K}_d(\omega) \) is \(N \). When the number of eigenvalues of equation (20b) exceeds the system dimension \(N \), one should observe more than \(N \) peaks in the dynamic compliance spectra for a lightly damped system. For example, consider the case when the mount system is modelled by a single-d.o.f. oscillator; the number of peaks depends on the characteristics of the measured dynamic stiffness, which itself may exhibit multi-dimensional behavior due to its frequency dependence. Singh et al. [10] have observed it in their transmissibility studies based on measured mount data.

Based on the discussions presented in this and the previous sections, various eigenvalue problems may be classified depending on the visco-elastic damping formulation. Table 4 summarizes such a classification.

4.2.2. Forced harmonic responses

When the system dimension \(N \) is relatively small, forced harmonic responses can be easily calculated by using

\[
\begin{align*}
\ddot{q}_a(\omega) &= D^{-1}(\omega)\ddot{r}_d(\omega), \\
D(\omega) &= -\omega^2M + \hat{K}_d(\omega) = -\omega^2M + K_d'(\omega) + iK''_d(\omega).
\end{align*}
\]

A look-up table may be used to find \(\hat{K}_d(\omega) \) values, and the responses are calculated at one frequency at a time. However, this calculation procedure is not cost-effective when \(N \) becomes rather large, for example when this calculation is attempted with a FEM type numerical code. Therefore, the modal expansion technique should be adopted as the first calculation method. Since the modal superposition method requires that eigenvectors must satisfy equation (11), this approximation implies that \(\hat{u} \), as obtained from equation (20b) is assumed to be orthogonal with respect to the \(M \) and \(\hat{K}_d(\omega) \) matrices. Therefore, equation (11) must be employed to examine the validity of the orthogonality condition. Note here that only \(N \) distinct eigenvalues and eigenvectors are assumed to exist. The following error \((\varepsilon^2_1) \) criterion may be proposed to assess the extent of deviation from the orthogonality property:

\[
\varepsilon^2_1(\omega) = \frac{|\det[\text{diag}(\hat{M}_M)]| - |\det[\hat{M}_M]|}{|\det[\hat{M}_M]|} + \frac{|\det[\text{diag}(\hat{K}_d(\omega))] - |\det[\hat{K}_d(\omega)]|}{|\det[\hat{K}_d(\omega)]|},
\]

where \(\hat{U} \) is the modal matrix corresponding to equation (20b) and the subscript \(M \) denotes the modal domain. When \(\varepsilon^2_1 \) is small, we may apply the modal expansion method, given by equation (12), to approximate the forced harmonic response.

Two approximate methods are considered next. One may first assume \(\hat{K}_d \) to contain elements with constant values that are evaluated at \(\omega_o \). Now use any LTI method such as equation (12); this will be called the approximate Method I. In the approximate Method II, assume that only \(N \) eigenvalues and eigenvectors result from equation (20b), and further assume the solution to be of the form of equation (12). Pre-multiply both sides of equation (20a) by \(\hat{U}^T \) and obtain

\[
[-\omega^2\hat{M}_M + \hat{K}_d(\omega)]\ddot{p}_d(\omega) = \hat{U}^T\ddot{r}_d(\omega).
\]

\(4.398 \text{ T. JEONG AND R. SINGH} \)
Table 4

Classification of eigenvalue problems depending on damping model

<table>
<thead>
<tr>
<th>Damping model</th>
<th>Mathematical representation</th>
<th>Eigenvalue problem (Dimension)</th>
<th>Eigenvalues (number of eigenvalues)</th>
<th>Eigen-vectors</th>
<th>Orthogonality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscous, proportional</td>
<td>$C = \alpha M + \beta K_s$</td>
<td>$K_s \mathbf{u}_r = \lambda \mathbf{M} \mathbf{u}_r$</td>
<td>(N) Real (N)</td>
<td>Real</td>
<td>Valid</td>
</tr>
<tr>
<td>Viscous, non-proportional</td>
<td>$C \neq \alpha M + \beta K_s$</td>
<td>$B \ddot{\mathbf{w}}_r = \lambda A \ddot{\mathbf{w}}_r$</td>
<td>$(2N)$ Complex $(2N)$</td>
<td>Complex</td>
<td>Valid</td>
</tr>
<tr>
<td>A $=$ $\begin{bmatrix} 0 & M \ M & C \end{bmatrix}$</td>
<td></td>
<td>B $=$ $\begin{bmatrix} -M & 0 \ 0 & K_s \end{bmatrix}$</td>
<td>$\ddot{\mathbf{w}}_r = \begin{bmatrix} \mathbf{\lambda}_r \mathbf{u}_r \ \dot{\mathbf{u}}_r \end{bmatrix}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visco-elastic, proportional</td>
<td>$\tilde{K}_d = \gamma_d (1 + i \eta)$</td>
<td>$K_d \mathbf{u}_r = \lambda \mathbf{M} \mathbf{u}_r$</td>
<td>(N) Real (N)</td>
<td>Real</td>
<td>Valid</td>
</tr>
<tr>
<td>Visco-elastic, non-proportional</td>
<td>$\tilde{K}_d = \gamma_d + i \gamma_d'$</td>
<td>$\tilde{K}_d \mathbf{u}_r = \lambda \mathbf{M} \mathbf{u}_r$</td>
<td>(N) Complex (N)</td>
<td>Complex</td>
<td>Valid</td>
</tr>
<tr>
<td>Visco-elastic, proportionally varying frequency dependent</td>
<td>$\tilde{K}_d(\omega) = \tilde{a}(\omega) \tilde{K}_d$</td>
<td>$\tilde{K}_d(\omega) \mathbf{u}_r = \lambda \mathbf{M} \mathbf{u}_r$</td>
<td>(N) Complex (N)</td>
<td>Complex</td>
<td>Valid</td>
</tr>
<tr>
<td>$\tilde{K}_d(\omega) = \tilde{K}_d(\omega_0)$</td>
<td>$\tilde{K}_d(\omega) \mathbf{u}_r = \lambda \mathbf{M} \mathbf{u}_r$</td>
<td>$\tilde{K}_d(\omega) \mathbf{u}_r = \lambda \mathbf{M} \mathbf{u}_r$</td>
<td>(N) Complex $(\geq N)$</td>
<td>Complex</td>
<td>Invalid</td>
</tr>
<tr>
<td>$\tilde{K}_d(\omega) = \tilde{a}(\omega) \tilde{K}_d$ or $\tilde{K}_d(\omega) = \tilde{K}_d(\omega) + i \tilde{K}_d'(\omega)$</td>
<td>$\tilde{K}_d(\omega) \mathbf{u}_r = \lambda \mathbf{M} \mathbf{u}_r$</td>
<td>$\tilde{K}_d(\omega) \mathbf{u}_r = \lambda \mathbf{M} \mathbf{u}_r$</td>
<td>(N) Complex $(\geq N)$</td>
<td>Complex</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

Note: (1) Loss factor η is a spectrally invariant scalar constant. (2) M, C, and K_s are real symmetric matrices. (3) Dynamic stiffness matrix \tilde{K}_d is not Hermitian, rather it is complex symmetric, i.e., $\tilde{K}_d = \tilde{K}_d^T$.

VIBRATION ISOLATION MOUNTS 399
An approximate solution may be obtained by taking only the diagonal terms in the modal domain while neglecting off-diagonal terms as follows:

\[
\begin{bmatrix}
\vdots \\
m_r \\
\vdots \\
\end{bmatrix} = \text{diag}[M_r], \\
\begin{bmatrix}
\vdots \\
\tilde{K}(\omega) \\
\vdots \\
\end{bmatrix} = \text{diag}[\tilde{K}_{\omega M}(\omega)],
\]

\begin{equation}
(26a,b)
\end{equation}

\[
\tilde{p}_{mr}(\omega) = \frac{\tilde{u}_r^T f_r}{-\omega^2 m_r + \tilde{k}_r(\omega)},
\]

\begin{equation}
(26c)
\end{equation}

where \(\tilde{p}_{mr}\) is the \(r\)th element of \(\tilde{p}\), or the approximate response of the \(r\)th modal coordinate. The resulting solution \(\tilde{q}_{mr}\) from the modal superposition method, as given by equation (12), is only an estimate of the true solution \(q_{mr}\) that is given by equation (23a). Note that the errors involved in this approximation occur due to the absence of off-diagonal terms of dynamic stiffness \(D_{\omega M}(\omega)\) in modal co-ordinates. To assess the associated error, the following error criterion \(e_2^2\) is defined to measure how close \(\text{diag}(D_{\omega M}(\omega))\) is to \(D_{\omega M}(\omega)\); recall that \(e_2^2\) of equation (24a) is based on the deviation of eigenvectors from the orthogonal properties:

\[
e_2^2(\omega) = \frac{|\det[\text{diag}(D_{\omega M}(\omega))] - |\det[D_{\omega M}(\omega)]|}{|\det[D_{\omega M}(\omega)]|},
\]

\[
D_{\omega M}(\omega) = -\omega^2 M_r + \tilde{K}_{\omega M}(\omega).
\]

The following two response-related error criteria are also defined to judge the validity of two approximations that have been proposed here:

\[
e_3(\omega) = \frac{\|\tilde{q}_{mr}(\omega) - \tilde{q}_{mr}(\omega)\|}{\|\tilde{q}_{mr}(\omega)\|}, \\
e_4(\omega) = \frac{\|\tilde{q}_{mr}(\omega) - \tilde{q}_{mr}(\omega)\|}{\|\tilde{q}_{mr}(\omega)\|}.
\]

\begin{equation}
(28a,b)
\end{equation}

Correlations between \(e_1, e_2, e_3,\) and \(e_4\) will be examined in the next section for selected examples.

4.3. Examples

The first example considers the Type III model of section 3.2.3. However, in this example, the forced harmonic response will be calculated by using the eigenvectors from the non-linear eigenvalue problem (20b). The resulting errors based on the exact eigenvectors are negligible when \(\sigma\) is varied from 1 to 10. Error grows only when \(\sigma\) is very large, say 100. Compare these to the results of Figure 7 where the approximate eigenvectors of the Type III model are used. Significant improvement is observed even for a heavily damped system.

A comparison between the exact solution (9c) and the modal expansion method (12) is sought when the stiffness type of equation (21) is selected. The parameters of the first example of Table 2 are used here except \(\tilde{a}(\omega) = 1 + \omega/(100\pi)\). Since eigenvectors are orthogonal with respect to \(M\) or \(\tilde{K}_{\omega M}(\omega)\), both solutions yield exactly the same results.

Next, consider some spectrally varying stiffnesses to investigate the effects of their properties. Assume that \(\tilde{K}_{\omega M}(\omega)\) is an analytical function over \(\omega_L \leq \omega - \omega_o \leq \omega_H\) with

\[
K_{\omega M}(\omega) = K_{\omega M}(1 + \sum_{n=1}^{N} a_n \omega^n), \\
K''_{\omega M}(\omega) = K''_{\omega M}(1 + \sum_{n=1}^{N} b_n \omega^n),
\]

\begin{equation}
(29a,b)
\end{equation}
Table 5
System parameters for examples of section 4 with reference to Figure 3

<table>
<thead>
<tr>
<th>Example</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>The fourth example of Table 2</td>
</tr>
<tr>
<td>Second</td>
<td>The first example of Table 2 and (a(\omega) = 1 + \omega/(100\pi))</td>
</tr>
<tr>
<td>Third to Fifth</td>
<td>(C = \sigma_s (xM + \beta K), k_{s1} = \Gamma_{sd} K_{d1s}, k_{s2} = \Gamma_{sd} K_{d2s}, K^\prime_{d1s} = \sigma_{d1} \eta_{1} K_{d1s}, K^\prime_{d2s} = \sigma_{d2} \eta_{2} K_{d2s},) (K^\prime_{d1s} = \sigma_{d1} \eta_{1} K_{d1s}, K^\prime_{d2s} = \sigma_{d2} \eta_{2} K_{d2s}, k_{s2} + K^\prime_{d2s} = 3000 \text{ N/mm}, K_{d1s} = 200 \text{ N/mm}, K_{d2s} = 400 \text{ N/mm}, \alpha = 0.5, \beta = 10^{-5}, m_1 = 100 \text{ kg}, m_2 = 200 \text{ kg})</td>
</tr>
<tr>
<td>Third</td>
<td>(\sigma_s = \sigma_{d1} = \sigma_{d2} = 1 \cdot 0, \Gamma_{sd} = 0.5, \Gamma_{sd2} = 1 \cdot 0, \eta_1 = \eta_{12} = \eta_2 = 0 \cdot 1)</td>
</tr>
<tr>
<td>Fourth</td>
<td>(N^\prime = N^\prime, b_1 = a_1, N^\prime = 1, a_1 = 0 \cdot 1, 1, \text{ or } 2)</td>
</tr>
</tbody>
</table>
| Fifth | \(N^\prime = N^\prime \) for \(\tilde{K}_{d1}(\omega), \tilde{K}_{d12}(\omega), \text{ and } \tilde{K}_{d2}(\omega) \)
| \(\sigma_s, \sigma_{d1}, \sigma_{d12}, \text{ and } \sigma_{d2} = R(1, 100), \) \(\beta_{sd2} = R(0 \cdot 1, 10), \eta_1 = \eta_{12} = \eta_2 = 0 \cdot 005 \) |
| | \(N^\prime = 1 \) \(a_1 \) and \(b_1 = R(0 \cdot 1, 2) \) |
| | \(N^\prime = 2 \) \(a_1, a_2, b_1, \) and \(b_2 = R(0 \cdot 1, 2) \) |
| | \(N^\prime = 3 \) \(a_1, a_2, a_3, b_1, b_2, \) and \(b_3 = R(0 \cdot 1, 2) \) |

\(\dagger \) \(R(a,b) = \) random function that assigns values from \(a \) to \(b \).

where \(K_{d0} = K_{d}(\omega_o), K^\prime_{d0} = K^\prime_d(\omega_o), \) and \(\sigma = (\omega - \omega_o)/\max(|\omega - \omega_o|) \). Also choose \(\omega_o = \omega_L = 0 \text{ Hz}, \) and \(\omega_H = 50 \text{ Hz}. \) Other parameters of the system of Figure 3 are listed in Table 5.

The results of the third example are shown in Figure 10 where \(|\tilde{H}_{22}(\omega)| \) spectra are compared between the exact solution and approximation I that assumes \(\tilde{K}_d = \tilde{K}_{d0}. This approximation gives reasonably good results as long as the stiffness variation is less than 10% over the frequency range.

The fourth example examines the effects of higher orders in equation (29). Comparison between \(N^\prime = 1 \) and 2 is shown in Figure 11(a). Effects of \(N^\prime = 2 \) and \(N^\prime = 3 \) are shown in Figure 11(b). With the same amount of variation, say 10 or 100%, the addition of higher order terms has a reduced effect on the dynamic compliance. Consequently, the approximation I may be used, even over a larger frequency range, provided the range is divided into several regions such that the stiffness variation is less than 10% within each region.

Finally, the approximation II is considered to assess the resulting errors and to examine correlations between error indices based on three stiffness types as listed as the fifth example in Table 5. Given 150 randomly selected sets of parameters, the correlation coefficients \(\gamma \) [33] between spectrally averaged error indices \(\langle \epsilon_1(\omega) \rangle_\omega, \langle \epsilon_2(\omega) \rangle_\omega, \langle \epsilon_3(\omega) \rangle_\omega, \) and \(\langle \epsilon_4(\omega) \rangle_\omega \) are calculated from 0 to 50 Hz, as shown in Figures 12–14. One can observe...
that e_1 is poorly correlated with e_3 and e_4. But e_3 and e_4 correlate well with e_2. Therefore, one may conclude that the forced harmonic response can be reasonably approximated, with less than 10% error, by the modal expansion method only when $\langle e_2(\omega) \rangle_\omega$ is less than 4%.
Figure 12. Correlation between error indices for the fifth example (N = 1) of Table 5. (a) $\langle e_3 \rangle_o$ versus $\langle e_1 \rangle_o$, $\gamma = 0.71$, (b) $\langle e_3 \rangle_o$ versus $\langle e_2 \rangle_o$, $\gamma = 0.92$, (c) $\langle e_4 \rangle_o$ versus $\langle e_1 \rangle_o$, $\gamma = 0.89$, (d) $\langle e_4 \rangle_o$ versus $\langle e_2 \rangle_o$, $\gamma = 0.96$.

5. QUASI-LINEAR MODEL

5.1. 1/2-CAR MODEL

Kim and Singh [8] developed a quasi-linear method and applied it to a 1/4 car model. Their method has identified superior resonance control characteristics of the hydraulic mount over the rubber mount in the low-frequency regime. Also, it has predicted the well-known poor performance of the passive hydraulic mount at higher frequencies. This quasi-linear method is applied to the 1/2 car model of Figure 4 since this model has not been specifically examined before. Eigensolutions of this system are sought first and then forced harmonic responses are calculated assuming the vehicle is subjected to either engine excitation force or road displacement input. To avoid any non-linearity in the governing equation, $\mathbf{K}_d(\omega, X)$ is evaluated at a given X_o as $\mathbf{K}_d(\omega; X_o)$, which is then used in place of $\mathbf{K}_d(\omega)$ in equation (20a). Equations of motions for Figure 4 can be easily derived, in terms of the generalized displacement vector $\mathbf{q}(t) = [q_1(t) q_2(t) q_3(t) q_4(t) q_5(t) q_6(t)]^T$ and force vector $\mathbf{f}_a = [F_1 \ 0 \ k_{s3} \tilde{q}_7 \ 0 \ 0 \ k_{s6} \tilde{q}_9]^T$. The resulting dynamic stiffness matrix will include $\mathbf{K}_d(\omega; X_o)$ terms.

5.2. RESULTS

The following parameters are chosen for the 1/2 car of Figure 4: $m_1 = 125$ kg, $m_2 = 220$ kg, $m_3 = 45$ kg, $m_4 = 270$ kg, $m_5 = 240$ kg, $m_6 = 75$ kg, $k_{s23} = 22$ N/mm,
Figure 13. Correlation between error indices for the fifth example \((N' = 2) \) of Table 5. (a) \(\langle e_3 \rangle_0 \) versus \(\langle e_1 \rangle_0 \); \(\gamma = 0.59 \), (b) \(\langle e_3 \rangle_0 \) versus \(\langle e_2 \rangle_0 \); \(\gamma = 0.93 \), (c) \(\langle e_4 \rangle_0 \) versus \(\langle e_1 \rangle_0 \); \(\gamma = 0.65 \), (d) \(\langle e_4 \rangle_0 \) versus \(\langle e_2 \rangle_0 \); \(\gamma = 0.91 \).

\[k_{s24} = 2000 \text{ N/mm}, \allowbreak k_{s3} = 200 \text{ N/mm}, \allowbreak k_{s45} = 1800 \text{ N/mm}, \allowbreak k_{s56} = 26 \text{ N/mm}, \allowbreak \text{ and } k_{s6} = 200 \text{ N/mm}. \]

Measured data for two typical hydraulic mounts (B and C) are shown in Figure 15; note that their properties differ considerably from those of A (Figure 2). Eigenvalues for hydraulic mount B are listed in Table 6; these are solved by using the non-linear eigenvalue problem (20b). The number of eigenvalues (7) is more than the system dimension (6) due to the frequency-dependent mount properties. Examples of frequency response functions are shown in Figure 16 where the effect of \(X \) is clearly observed even though the quasi-linear method is employed. Similar analyses may be conducted for any mount, over the given range of measured data. This may yield useful design information.

6. ANALYSIS OF PROBLEMS WITH FREQUENCY- AND AMPLITUDE-DEPENDENT PROPERTIES

6.1. LITERATURE REVIEW

Mathematical models of selected mounts or related phenomena have been attempted which illustrate some of the non-linear mechanisms involved. For example, Kim and Singh [8] have successfully developed a non-linear model of hydraulic engine mounts that requires the measurement of fundamental fluid system parameters. However, the model is device specific, and therefore one must construct a new simulation model from basic principles and laboratory measurements for each component. Such a model, though obtained via a time-consuming process, when available, can be extremely useful. For
example, Royston and Singh [34, 35] extended the models of Kim and Singh [8] and studied the vibratory energy flow issues.

Several linear system synthesis methods have been developed based on mobility concepts [18, 36] or modal methods [37–39]. The modal techniques suffer in accuracy when only a finite number of vibration modes is used [40, 41]. Some investigators have also included local non-linearities in their synthesis models [42–47]. In particular, Royston and Singh [34] have developed a dual-domain synthesis method for a hydraulic mount, where some non-linearities are handled in the time domain using the enhanced Galerkin method. Non-linearity in the frequency domain is described via a relationship between frequency and dynamic stiffness, but the sub-system itself, as defined in the frequency domain, is still linear.

6.2. NON-LINEAR SYNTHESIS METHOD

The single- or multi-term harmonic balance technique [19, 48], describing function approach [49], or Galerkin methods [34, 35, 50, 51] have been very successful in considering strong non-linearities. Such methods, however, explicitly demand a time domain model that may require considerable effort to develop, given limited measurements as mentioned previously. Instead, it is proposed that the measured $\tilde{K}_d(\omega, X)$ data be directly used in developing a system model. Note that the measured $\tilde{K}_d(\omega, X)$ of a non-linear device exactly corresponds to the single-term harmonic balance technique. One could, however, expand this approach further in future where the ‘black box’ could be characterized using
multi-term harmonic balance technique depending on the non-linear characteristics or the accuracy needed.

A refined synthesis method, which incorporates local or sub-system non-linearities, is proposed here to fully understand the system behavior while providing an efficient calculation alternative especially for large structures. The generic non-linear system is defined exclusively in the frequency domain, as shown in Figure 17. Local non-linearities are introduced by N_m mounts that are located between two LTI sub-systems A and B of
Figure 16. Effect of displacement amplitude \((X)\) on engine accelerance for the 1/2 car model of Figure 4 with hydraulic mount (C) of Figure 15: ——, \(X = 0.125\) mm; —, \(X = 0.5\) mm.

Figure 17. System synthesis concept that includes local non-linearities introduced by mounts.

dimensions \(N_A\) and \(N_B\), respectively. For the given harmonic excitations \(\bar{f}_A(\omega)e^{i\omega t}\) and \(\bar{f}_B(\omega)e^{i\omega t}\), assume that only the harmonic responses are of interest: \(\tilde{q}_A(\omega)e^{i\omega t} = [\bar{q}_{AM}(\omega)\bar{q}_{AI}(\omega)]e^{i\omega t}\) and \(\tilde{q}_B(\omega)e^{i\omega t} = [\bar{q}_{BM}(\omega)\bar{q}_{BI}(\omega)]e^{i\omega t}\). Here the response \(\tilde{q}_A\) of sub-system A consists of \(\bar{q}_{AM}\) that describes the interfacial regime with all mounts and \(\bar{q}_{AI}\) for the remaining part. Similarly, \(\tilde{q}_B\) of sub-system B can be decomposed in terms of \(\bar{q}_{BM}\) and \(\bar{q}_{BI}\). The harmonic displacements across the mount are defined as \(\bar{X}e^{i\omega t} = (\bar{q}_{AM} - \bar{q}_{BM})e^{i\omega t}\) and the non-linear interfacial forces are given by \(\bar{f}_U(\omega, |\bar{X}|)e^{i\omega t} = -\bar{K}_M(\omega, |\bar{X}|)\bar{X}e^{i\omega t}\) and
The governing equations of motion of the entire system are then assembled as follows:

\[
[M_A + i\omega C_A + K_A] \ddot{q}_A(\omega, |\ddot{X}|) = \ddot{f}_A(\omega) + L_{MA}^T \ddot{F}_U(\omega, |\ddot{X}|), \quad (30a)
\]

\[
[M_B + i\omega C_B + K_B] \ddot{q}_B(\omega, |\ddot{X}|) = \ddot{f}_B(\omega) + L_{MB}^T \ddot{F}_L(\omega, |\ddot{X}|). \quad (30b)
\]

Here, \(L_{MA}\) is a Boolean selection matrix which extracts the interfacial d.o.f. from sub-system A (and likewise \(L_{MB}\) is for B) and relates it to mounts. Now suppose that \(\ddot{X}\) is known (or assigned a specified value), then \(\ddot{q}_A\) and \(\ddot{q}_B\) can be expressed as \(U_A \dddot{p}_A\) and \(U_B \dddot{p}_B\) respectively, by using the modal expansion method since the left-hand sides of equations (30) possess only the LTI system property with proportionally damped \(C_A\) and \(C_B\). Here, \(U_A\) and \(U_B\) represent the normal modal matrix for A and B while \(\dddot{p}_A\) and \(\dddot{p}_B\) represent the normal mode responses for A and B. Further define \(\dddot{p}_A\) and \(\dddot{p}_B\) as

\[
\dddot{p}_A(\omega, |\dddot{X}|) = \text{diag} \left(\frac{1}{\omega_{A,k}^2 - \omega^2 + 2i\zeta_{A,k}\omega\omega_{A,k}} \right) U_A^T \ddot{f}_A(\omega) - L_{MA}^T \ddot{F}_M(\omega, |\dddot{X}|) \dddot{X}, \quad (31a)
\]

\[
\dddot{p}_B(\omega, |\dddot{X}|) = \text{diag} \left(\frac{1}{\omega_{B,k}^2 - \omega^2 + 2i\zeta_{B,k}\omega\omega_{B,k}} \right) U_B^T \ddot{f}_B(\omega) + L_{MB}^T \ddot{F}_M(\omega, |\dddot{X}|) \dddot{X}, \quad (31b)
\]

where \(\text{diag}(a_k)\) is a diagonal matrix with \(a_k\) as the \(k\)th element, \(\omega_{A,k}\) is the \(k\)th natural frequency of sub-system A, \(\zeta_{A,k}\) is the \(k\)th modal damping ratio of A; the same nomenclature is applied to sub-system B. If the assumed \(\dddot{X}\) is a valid solution, the responses \(\dddot{q}_{AM} = L_{MA} \dddot{p}_A\) and \(\dddot{q}_{BM} = L_{MB} \dddot{p}_B\) should be consistent with the values given by \(\dddot{X} = \dddot{q}_{AM} - \dddot{q}_{BM}\). Hence, the non-linear system problem can now be reformulated in terms of the following non-linear algebraic equation that must be iteratively solved for \(\dddot{X}\) at each \(\omega\):

\[
\dddot{X}(\omega) - L_{MA} U_A \text{diag} \left(\frac{1}{\omega_{A,k}^2 - \omega^2 + 2i\zeta_{A,k}\omega\omega_{A,k}} \right) U_A^T \dddot{F}_M(\omega, |\dddot{X}(\omega)|) \dddot{X}(\omega) \nonumber
\]

\[
+ L_{MB} U_B \text{diag} \left(\frac{1}{\omega_{B,k}^2 - \omega^2 + 2i\zeta_{B,k}\omega\omega_{B,k}} \right) U_B^T \dddot{F}_M(\omega, |\dddot{X}(\omega)|) \dddot{X}(\omega) = 0. \quad (32)
\]

6.3. Construction of a Non-Linear Time Domain Model

A time domain model for an amplitude- and frequency-dependent mount (say of Figure 1(b)) is first developed, based on a linear frequency-dependent model. For example, the model for Figure 2 with \(X = 1.0 \text{ mm}\) was expressed by Singh et al. [10]

\[
K_d(s) = \frac{f_M(s)}{x(s)} = k_r \left(\frac{s^2}{\omega_{n1}^2} + \frac{2\zeta_1 s}{\omega_{n1}} + 1 \right)^{-1} \left(\frac{s^2}{\omega_{n2}^2} + \frac{2\zeta_2 s}{\omega_{n2}} + 1 \right), \quad (33)
\]

where \(s\) is the Laplace transformation variable. Equation (33) can be transformed to the corresponding time domain model as follows, where \(f_T(t)\) is the transmitted force and \(x(t)\) is the excitation, as shown in Figure 1(b):

\[
\frac{1}{\omega_{n2}^2} \dddot{x}(t) + \frac{2\zeta_2}{\omega_{n2}} \ddot{x}(t) + \dot{x}(t) = k_r \left[\frac{1}{\omega_{n1}^2} \dddot{x}(t) + \frac{2\zeta_1}{\omega_{n1}} \ddot{x}(t) + x(t) \right]. \quad (34)
\]
Figure 18. Effect of parameters on $\tilde{K}_d(\omega)$ as given by equation (34). (a) ω_{n1}, (b) ζ_1, (c) ω_{n2}, and (d) ζ_2: ——, 50% of baseline value; ——, baseline; ———, 200% of baseline value.

The amplitude-dependent model may now be empirically developed by observing the effects of ω_{n1}, ω_{n2}, ζ_1, and ζ_2 on $K_d(s)$, given simulation or measured data, as shown in Figure 18. For example, the $\tilde{K}_d(\omega, X)$ at $X = 0.1$ mm of Figure 1(b) may be obtained by either increasing ω_{n1} or decreasing ω_{n2}. Hence, the non-linear equation for this mount is reformulated as follows where A_1, A_2, A_3, and A_4 are empirical functions that assign amplitude-dependent properties:

$$\frac{1}{(A_3 \omega_{n2})} \ddot{f}_r(t) + \frac{2(A_4 \zeta_2)}{A_3 \omega_{n2}} f_r(t) + f_r(t) = k_r \left[\frac{1}{(A_1 \omega_{n1})^2} \ddot{x}(t) + \frac{2(A_2 \zeta_1)}{A_1 \omega_{n1}} \dot{x}(t) + x(t) \right]. \quad (35)$$

In the time domain model, it is rather difficult to incorporate X as a variable. Therefore, the time history of $x(t) = X \sin(\omega t)$ is used as a criterion for selecting proper values of A_1, A_2,
A_3, and A_4. Measured dynamic stiffness data of Figure 2 have the following amplitude-dependent characteristics. (a) From $X = 0.1$ to 1 mm, $|\tilde{K}_d(\omega)|$ and $\phi_K(\omega)$ increase until the maximum at $X = 1$ mm, and (b) when X exceeds 1 mm, $|\tilde{K}_d(\omega)|$ and $\phi_K(\omega)$ start decreasing. Four amplitude regimes are selected: $|x(t)| < 0.1$ mm, $0.1 \leq |x(t)| < 1$ mm, $1 \leq |x(t)| < 2.5$ mm, and $|x(t)| \geq 2.5$ mm. At each ω and X of $x(t) = X \sin(\omega t)$, $f_T(t) = f_{Ta} \sin(\omega t + \phi_K)$ is obtained by numerically integrating equation (35) and neglecting sub- and super-harmonic terms of $f_T(t)$. The dynamics stiffness $\tilde{K}_d(\omega, X)$ is then given by \tilde{f}_{Ta}/X. Figure 19 shows the plots of four empirical parameters for mount A that correspond to $\tilde{K}_d(\omega, X)$ of Figure 20. Since equation (35) is constructed purely for the sake of validation, it does not necessarily reproduce the results of Figure 2. Nonetheless, this formulation could clearly show the effects of ω and X for any mount.

6.4. 1/4-CAR EXAMPLE

Consider the 1/4 car of Figure 1(a) with parameters: $m_e = 122.3$ kg, $m_c = 270$ kg, $k_c = 20$ N/mm, and $b_c = 1400$ N/s/m. The calculated $\tilde{K}_d(\omega, X)$ of Figure 20 which resembles the measured dynamic stiffness of mount A of Figure 2 is used for solving equation (32). Since the interfacial dimension is one, equation (32) is reduced to the following non-linear algebraic equation:

$$
\left(-m_c \omega^2 + \frac{-(m_e + m_c) \omega^2 + ib_c \omega + k_c}{-m_c \omega^2 + ib_c \omega + k_c} \tilde{K}_d(\omega, X) \right) \tilde{X}(\omega) = f_a(\omega).
$$

(36)
To provide $\tilde{K}_d(\omega, X)$ at any values of ω and X, one may resort to a surface fitting of Figure 20 by using bilinear, bicubic, or bispline interpolations. For the time domain analysis, the non-linear mount equation (35) is substituted into the 1/4 car system of Figure 1(a) and the resulting time domain model is as follows in terms of mount (or transmitted) $f_T(t)$ and excitation forces $f(t)$:

\begin{align}
m_e \ddot{q}_e(t) + f_T(t) &= f(t), \quad m_c \ddot{q}_c(t) + b_c \dot{q}_c(t) + k_c q_c(t) - f_T(t) = 0, \quad (37a,b) \\
&= \frac{k_r}{(A_1 \omega_n^2)}(\ddot{q}_e(t) - \ddot{q}_c(t)) - \frac{1}{(A_3 \omega_n^2)^2} \dddot{f}_T(t) + \frac{2k_r(A_2 \xi_1)}{A_1 \omega_n} (\dot{q}_e(t) - \dot{q}_c(t)) \\
&\quad - \frac{2k_r(A_4 \xi_2)}{A_3 \omega_n} f_T(t) + k_r(q_e(t) - q_c(t)) - f_T(t) = 0. \quad (37c)
\end{align}
For mount A of Figure 1, the relevant system parameters are $\omega_{n_1}/(2\pi) = 6$ Hz, $\omega_{n_2}/(2\pi) = 11.3$ Hz, $\zeta_1 = 0.66$, $\zeta_2 = 0.35$, and $k_c = 270$ N/mm. Predictions by equation (36) are compared with the results of equation (37) in Figure 21. To solve equation (36), the values of \tilde{K}_d at arbitrary points of ω and X are provided by using a bilinear interpolation. It is quite clear that the proposed frequency domain method matches extremely well with the time domain integration technique. Non-linear characteristics of the 1/4 car are clearly observed when the amplitude of excitation force $|\tilde{f}_d|$ is varied. The first resonance peaks in all cases appear around 1.2 Hz; it is associated with k_c and b, which implies the vehicle suspension mode. But the second resonant peaks are observed around 9.5 Hz for $|\tilde{f}_d| = 10$ N, 13.4 Hz for 100 N, and 15.1 Hz for 200 N; it is associated with the engine bounce mode. One may also observe a hardening spring behavior since the backbone curves bend to the right. This has also been observed by Royston and Singh [35], based on a semi-analytical calculation method.

7. CONCLUSION

Five fundamental problems of frequency- and amplitude-dependent isolators, as shown in Table 1, have been defined and examined. Both linear and non-linear eigenvalue problems, as listed in Table 4, have been formulated to handle the frequency dependency of elastic and dissipative parameters. Real or complex eigensolutions may be obtained depending on the numerical values of parameters. Further, it has been found that the Type III model is better suited as an approximation when the visco-elastic damping is more dominant than the viscous damping in a physical system. In addition, error analyses reveal that the validity of the modal expansion method could be judged by using the error criterion ε^2. Nonetheless, a more fundamental study is needed to better understand the nature of the non-linear eigenvalue problems. This work is left for a future project.

The application of the quasi-linear method to a 1/2 car model has revealed that frequency dependency may cause the frequency response functions to exhibit more peaks than system dimension would normally allow for an LTI system. This method is suitable to examine the global effects of the displacement excitation amplitude in a vehicle model, as shown in Figure 20. A refined non-linear synthesis method has been developed in the frequency domain, and has been validated by comparing to the corresponding time domain model. The proposed frequency domain formulation has distinct and pragmatic advantages over the true time domain models that are often not available for practical devices. Future studies may consider extending the synthesis method from a single-term to a multi-term harmonic balance technique. Numerical issues associated with the surface fitting of measured $\tilde{K}_d(\omega, X)$ need to be examined in detail. The use of the continuation method [47] could be implemented to trace the non-linear response curves.

ACKNOWLEDGMENT

The Chrysler Challenge Fund and the Goodyear Tire and Rubber Company (St. Marys) are gratefully acknowledged for supporting this research.

REFERENCES

The concept of complex stiffness applied to problems of oscillations with viscous and hysteretic damping.

APPENDIX A: NOMENCLATURE

\(a_1, a_2, a_3 \) coefficients of polynomial orders in \(K_d(\omega) \)
\(b_1, b_2, b_3 \) coefficients of polynomial orders in \(K_A(\omega) \)
\(a(\omega) \) spectral function
\(A_1, A_2, A_3, A_4 \) amplitude-dependent non-linear parameters
\(A, B \) system matrices in \(2N \) space
\(b_c \) viscous damping coefficient of chassis
\(c \) viscous damping coefficient
\(C \) viscous damping matrix
\(D \) dynamic system (stiffness) matrix
\(f, g \) force
\(F \) external force amplitude
\(f, g \) external force vector
\(i \) \(\sqrt{-1} \)
\(k \) stiffness
\(K_d \) dynamics stiffness
\(K'_d \) storage stiffness
\(K''_d \) loss stiffness
\(K \) stiffness matrix
\(L \) Boolean selection matrix
\(m \) mass
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>inertia matrix</td>
</tr>
<tr>
<td>N</td>
<td>dimension of a dynamic system</td>
</tr>
<tr>
<td>N', N''</td>
<td>number of polynomial orders in frequency-dependent mount</td>
</tr>
<tr>
<td>N_o</td>
<td>number of frequency points in (\varepsilon)</td>
</tr>
<tr>
<td>p</td>
<td>modal displacement</td>
</tr>
<tr>
<td>p</td>
<td>modal displacement vector</td>
</tr>
<tr>
<td>q</td>
<td>generalized displacement</td>
</tr>
<tr>
<td>q</td>
<td>generalized displacement vector</td>
</tr>
<tr>
<td>R</td>
<td>random function</td>
</tr>
<tr>
<td>s</td>
<td>Laplace transformation variable</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>u, w</td>
<td>eigenvectors</td>
</tr>
<tr>
<td>U, W</td>
<td>modal matrices</td>
</tr>
<tr>
<td>x</td>
<td>displacement</td>
</tr>
<tr>
<td>x, y</td>
<td>displacement vector</td>
</tr>
<tr>
<td>X</td>
<td>displacement amplitude</td>
</tr>
<tr>
<td>(\alpha, \beta)</td>
<td>Rayleigh's coefficients</td>
</tr>
<tr>
<td>(\delta_{ij})</td>
<td>Kroneker delta function</td>
</tr>
<tr>
<td>(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)</td>
<td>error criteria</td>
</tr>
<tr>
<td>(\Delta_d)</td>
<td>decoupler gap</td>
</tr>
<tr>
<td>(\Gamma_{sb}, \Gamma_{sd2})</td>
<td>scaling factor between static and storage stiffnesses</td>
</tr>
<tr>
<td>(\phi)</td>
<td>phase angle</td>
</tr>
<tr>
<td>(\phi_K)</td>
<td>loss angle or phase of dynamic stiffness</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>eigenvalue</td>
</tr>
<tr>
<td>(\omega)</td>
<td>frequency, rad/s</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>non-dimensional frequency</td>
</tr>
<tr>
<td>(\eta)</td>
<td>viscous damping ratio</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>amplitude</td>
</tr>
<tr>
<td>A</td>
<td>sub-system A</td>
</tr>
<tr>
<td>B</td>
<td>sub-system B</td>
</tr>
<tr>
<td>d</td>
<td>dynamic stiffness</td>
</tr>
<tr>
<td>e</td>
<td>engine or equivalent quantity</td>
</tr>
<tr>
<td>c</td>
<td>chassis</td>
</tr>
<tr>
<td>I</td>
<td>imaginary part or a sub-system component</td>
</tr>
<tr>
<td>k</td>
<td>index</td>
</tr>
<tr>
<td>r, j = 1, 2, ..., N</td>
<td>modal indices</td>
</tr>
<tr>
<td>M</td>
<td>mount or modal domain</td>
</tr>
<tr>
<td>L</td>
<td>lower limit or lower interface of non-linear mount</td>
</tr>
<tr>
<td>H</td>
<td>upper limit</td>
</tr>
<tr>
<td>o</td>
<td>reference value</td>
</tr>
<tr>
<td>R</td>
<td>real part</td>
</tr>
<tr>
<td>s</td>
<td>static stiffness</td>
</tr>
<tr>
<td>T</td>
<td>transmitted quantity</td>
</tr>
<tr>
<td>U</td>
<td>upper interface of non-linear mount</td>
</tr>
</tbody>
</table>

Superscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>transpose</td>
</tr>
<tr>
<td>~</td>
<td>complex valued</td>
</tr>
<tr>
<td>-</td>
<td>static load</td>
</tr>
<tr>
<td>(\sim)</td>
<td>approximate value</td>
</tr>
</tbody>
</table>

Operators

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>diagonal matrix</td>
</tr>
<tr>
<td>Re</td>
<td>real part of complex variable</td>
</tr>
<tr>
<td>Im</td>
<td>imaginary part of complex variable</td>
</tr>
<tr>
<td>det</td>
<td>determinant of matrix</td>
</tr>
<tr>
<td>(\langle \rangle_o)</td>
<td>spectral average</td>
</tr>
</tbody>
</table>