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Dynamic Transmission Error
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Floquet Theory
An analytical solution to the dynamic transmission error of a helical gear pair is devel-
oped by using a single-degree-of-freedom model with piecewise stiffness functions that
characterize the contact plane dynamics and capture the velocity reversal at the pitch
line. By assuming a constant mesh stiffness density along the contact lines, a linear
time-varying model (with parametric excitations) is obtained, where the effect of sliding
friction is quantified by an effective mesh stiffness term. The Floquet theory is then used
to obtain closed-form solutions to the dynamic transmission error, and responses are
derived to both initial conditions and the forced periodic function under a nominal
preload. Analytical models are validated by comparing predictions with numerical simu-
lations, and the effect of viscous damping is examined. Stability analysis is also briefly
conducted by using the state transition matrix. Overall, the sliding friction has a mar-
ginal effect on the dynamic transmission error of helical gears, as compared with spur
gears, in the context of the torsional model. �DOI: 10.1115/1.2890115�
Introduction
This paper is an extension of our recent work �1� in which we

roposed a 12-degree-of-freedom �DOF�, linear time-varying
LTV� analytical model for helical gears that characterizes the
ontact plane dynamics and captures the velocity reversal at the
itch line due to sliding friction. Earlier, Velex and Cahouet �2�
ound that the dynamic bearing forces �as related to the sliding
riction in helical or spur gears� can indeed generate significant
ime-varying excitations at lower speeds. Velex and Sainsot �3�
xamined friction excitations in errorless spur and helical gear
airs and reported that the friction appears as a non-negligible
xcitation source, especially for translating motions. Lundvall et
l. �4� proposed a multibody model for spur gears and briefly
iscussed the role of profile modification in the presence of sliding
riction. Vaishya and Singh �5–7� illustrated frictional issues for
pur gears by assuming equal load sharing among the contact
eeth. This assumption leads to a rectangular variation in mesh
tiffness, which is a special case �zero helical angle� of a generic
rapezoidal stiffness profile for helical gears. To overcome this
eficiency �5–7�, we have developed a more accurate model of the
pur gears that incorporates realistic mesh stiffness and sliding
riction �8�. Many of the models cited above are solved numeri-
ally. Thus, there is a clear need for analytical �closed form� so-
utions to the dynamic response of a helical gear pair under the
nfluence of sliding friction. In fact, Vaishya and Singh �6� applied
he Floquet theory to a simplified spur gear model to predict re-
ponses of parametrically excited system and to assess the system
tability. Our paper will enhance Vaishya and Singh’s work �6� by
pplying the Floquet theory to a helical gear pair.

Linear Time-Varying Formulation
The chief objectives of this paper are as follows. First is to

lace emphasis on periodic frictional effects at the gear tooth in-
erface by ignoring other directional properties and the auxiliary
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components of the gearbox �1�. This will allow us to describe the
single mesh helical geared system as a simplified single-degree-
of-freedom �SDOF�, LTV oscillator with piecewise linear effec-
tive mesh stiffness; frictional forces/moments will be formulated
as parametric excitations. Second is to derive closed-form solu-
tions for the LTV system in terms of the dynamic transmission
error �DTE� under both homogeneous and forced conditions by
using the Floquet theory. Third is to validate the proposed theory
by using the numerical integration method. Key assumptions in-
clude the following: �1� The vibratory motions are small com-
pared with the kinematical motion, so that the position of the
contact lines and the relative sliding velocity depend only on the
mean angular motions of the gear pair. �2� The mesh stiffness per
unit length along the contact lines �i.e., stiffness density k� is
constant �1�; this is equivalent to the equal load sharing assump-
tion in spur gears �5–7�. �3� Coulomb’s law with a constant coef-
ficient of friction ��� is employed �1–8� though mixed lubrication
regimes exist �9�. �4� The bearing stiffness is assumed to be much
higher than the mesh stiffness, and thus the shaft/bearings could
be simplified as rigid connections. Hence, only the torsional DOFs
are considered in terms of DTE. Also, it is assumed that the mean
load is high such that the dynamic load is insufficient to cause any
tooth separations �10,11�.

The helical geared system is depicted in Fig. 1, where the pin-
ion and gear are modeled as rigid cylinders linked by a series of
independent stiffness elements that describe the contact plane tan-
gent to the base cylinders �1�. The pinion and gear dynamics are
formulated in the coordinate systems located at their respective
centers; the nominal motions are given as −�pez and �gez
=ez�prbp /rbg. Here, the z axis coincides with the axial direction, e
is the unit directional vector, and rbp and rbg are the base radii of
pinion and gear. An �static� input torque Tp is applied to the pin-
ion, and the �static� braking torque Tg on the gear obeys the basic
gear kinematics. Superimposed on the kinematic motions are ro-
tational vibratory motions denoted by �zp and �zg for the pinion
and gear. Analytical formulations are demonstrated via the follow-
ing sample case with parameters of the pinion �relevant gear pa-
rameters are within the parentheses�: number of teeth, 25 �31�;
outside diameter, 3.38 �4.13� in.; pitch diameter, 3.125

�3.875� in.; root diameter, 2.811 �3.56� in.; center distance,
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.5 in.; transverse diametral pitch, 8 in.−1; transverse pressure
ngle, 25 deg, helix angle, �b=21.5 deg, face width, W=1.25 in.;
olar moment of inertia, Jpz=8.33�10−3 �Jgz=1.64
10−2� lb s2 in.; and mass, 1.26�10−2 �1.58�10−2� lb s2 / in.−1.

ince the overall contact ratio �c=2.7, either two or three tooth
airs are in contact at any time instant. The three meshing tooth
airs within one mesh cycle are numbered as 0, 1, and 2, respec-
ively. A constant mesh stiffness density �k� along the contact lines
ould be estimated via a static analysis by using the finite element/
ontact mechanics �FE/CM� formulation �12,13�.

A simplified SDOF model could be derived in items of DTE
�t�=rbp�zp�t�+rbg�zg�t� at the gear mesh by assuming rigid links
t the shaft/bearings. Note that the dynamic mesh forces oriented
n other directions �such as the sliding force in the off line-of-
ction �OLOA� direction� still need to be formulated �1� for cal-
ulations of the dynamic moments in the torsional direction.
ence, the effective torsional stiffness should have contributions

rom both the sliding friction and the time-varying elastic tooth
tiffness due to the Hertzian contact.

For multiple tooth pairs in contact, n=ceil��c� �n=3 for the
ample case� pairs of meshing teeth need to be formulated, where
he “ceil” function rounds �c to the nearest integers toward infin-
ty. Figure 2 illustrates the snapshot at the beginning of a mesh
ycle. At this instant, pair 0 �defined as x0�t�=mod��prbpt ,��
LT1A, where � is the base pitch, L represents the geometrical
istance, the modulus function is mod�x ,y�=x−y · floor�x /y� for
�0, and the “floor” function rounds x /y to the nearest integer

oward minus infinity� just comes into mesh at point A and pair 1
defined as x �t�=mod�� r t ,��+�+L � is in contact along

Fig. 1 Schematic of the helical gear pair system
1 p bp T1A

he pinion and gear as
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line CI. Likewise, pair 2 �defined as x2�t�=mod��prbpt ,��+2�
+LT1A� contacts each other along line MN. As the gears roll, the
contact lines move diagonally across the contact zone. When pair
0 reaches pitch point P, the relative sliding velocity between pin-
ion and gear starts to reverse, resulting in a reversal of friction
force along the portion of contact line beyond the pitch point.
Once pair 0 reaches line CI �and pair 1 reaches line MN� in the
end of the mesh circle, pair 0 becomes pair 1 �and pair 1 becomes
pair 2�, corresponding to the start of the next mesh cycle. The
dynamic tooth stiffness functions Kp,i�t� and Kg,i�t� are defined
below where Mp,i�t� and Mg,i�t� are the dynamic moments on the
pinion and gears, respectively �1�,

Kp,i�t� =
Mp,i�t�
rbp��t�

�1a�

Kg,i�t� =
Mg,i�t�
rbg��t�

�i = 0,1,2� �1b�

For the sample case, Kp,i�t� and Kg,i�t� are explicitly derived for
each meshing tooth pair over eight contact zones �Zi�, as shown in
Fig. 2. Also, refer to Ref. �1� for details. Zones 1 and 2 correspond
to pair 0 before and after reaching the pitch line; Zones 3–5 and
Zones 6–8 correspond to pairs 1 and 2, respectively. The stiffness
values of the two contact zones for the first pair �0� are derived as
follows, where xm, xf, zm, and zf denote the lower and upper limits
�1� along x and z axes, as shown in Fig. 1,

Fig. 2 Contact zones at the beginning of a mesh cycle within
the contact plane. Key: PP� is the pitch line; AA� is the face
width W; AD is the length of contact zone Z.
Kp,0�t� = �
k

rbp
�−

�

2
�xf�t� + xm� + rbp cos �b��zf − zm�t�� �Z1�

k

rbp
�−

�

2
�xp + xm��zp�t� − zm�t�� + rbp cos �b�zf − zm�t�� +

�

2
�xf�t� + xp��zf − zp�t��� �Z2� � �2a�

Kg,0�t� = �
k

rbg
��

2
�xf�t� + xm − 2xg� + rbg cos �b��zf − zm�t�� �Z1�

k

rbg
��

2
�xp + xm��zp − zm�t�� −

�

2
�xf�t� + xp��zf − zp�t�� + xg��zf + zm�t� − 2zp�t�� + rbg cos �b�zf − zm�t��� �Z2� � �2b�

he second meshing tooth pair �1� is classified into Zones 3–5, as shown in Fig. 2. Its composite torsional stiffness could be derived for
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Kp,1�t� =�
k

rbp
�−

�

2
�xp + xm��zp�t� − zm�t�� +

�

2
�xf�t� + xp��zf − zp�t�� + rbp cos �b�zf − zm�t��� �Z3�

k

rbp
�−

�

2
�xp + xm�t���zp�t� − zm� +

�

2
�xf�t� + xp��zf − zp�t�� + rbp cos �b�zf − zm�t��� �Z4�

k

rbp
�−

�

2
�xp + xm�t���zp�t� − zm� +

�

2
�xf + xp��zf�t� − zp�t�� + rbp cos �b�zf�t� − zm�� �Z5�

� �3a�

Kg,1�t� =�
k

rbg
��

2
�xp + xm��zp�t� − zm�t�� −

�

2
�xf�t� + xp��zf − zp�t�� + xg��zf + zm�t� − 2zp�t�� + rbg cos �b�zf − zm�t��� �Z3�

k

rbg
��

2
�xp + xm�t���zp�t� − zm� −

�

2
�xf�t� + xp��zf − zp�t�� + xg��zf + zm − 2zp�t�� + rbg cos �b�zf − zm�� �Z4�

k

rbg
��

2
�xp + xm�t���zp�t� − zm� −

�

2
�xf + xp��zf�t� − zp�t�� + xg��zf�t� + zm − 2zp�t�� + rbg cos �b�zf�t� − zm�� �Z5�

� �3b�

he third meshing tooth pair �2� is divided into zones 6–8, as shown in Fig. 2. Its composite torsional stiffness could be derived for the
inion and gear as

Kp,2�t� =�
k

rbp
�−

�

2
�xp + xm�t���zp�t� − zm� +

�

2
�xf + xp��zf�t� − zp�t�� + rbp cos �b�zf�t� − zm�� �Z6�

k

rbp
��

2
�xf + xm�t�� + rbp cos �b��zf�t� − zm� �Z7�

0 �Z8�
� �4a�

Kg,2�t� =�
k

rbg
��

2
�xp + xm�t���zp�t� − zm� −

�

2
�xf + xp��zf�t� − zp�t�� + xg��zf�t� + zm − 2zp�t�� + rbg cos �b�zf�t� − zm�� �Z6�

k

rbg
��

2
�xf + xm�t�� + rbp cos �b��zf�t� − zm� �Z7�

0 �Z8�
� �4b�
The undamped torsional equations for the pinion and gear are
erived as follows:

Jpz�̈zp�t� + 	
i=0

2

rbpKp,i�t����t� − 	�t�� = Tp �5�

Jgz�̈zg�t� + 	
i=0

2

rbgKg,i�t���t� = − Tg �6�

We define DTE ��t� and reduce Eqs. �5� and �6� into one equa-
ion, which describes an equivalent translational definite system as
ollows, where 	�t� is the unloaded static transmission error. A
ime-varying viscous damping coefficient Ce�t� is also included
iven �assumed� damping ratio 
e,

me�̈�t� + Ce�t���̇�t� − 	̇�t�� + Ke�t����t� − 	�t�� = Fe �7a�

me =
JpzJgz

rbg
2 Jpz + rbp

2 Jgz

�7b�

Ke�t� = 	
i=0

2

Ke,i�t� = 	
i=0

2
rbp

2 JgzKp,i�t� + rbg
2 JpzKg,i�t�

rbg
2 Jpz + rbp

2 Jgz

�7c�

Ce,i�t� = 2
e

meKe�t� �7d�

Fe =
rbpTpJgz − rbgTgJpz

rbg
2 Jpz + rbp

2 Jgz

�7e�
ere, me is the effective mass defined in the torsional-transverse
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direction and Fe is the effective external force due to the nominal
torques applied at the pinion and gear. The periodic effective stiff-
ness function Ke,i�t� of the ith meshing mesh pair is piecewise
linear, and it incorporates contributions from both the mesh tooth
stiffness and the sliding friction. The frictional influence on Ke,i�t�
is illustrated in Fig. 3 over eight contact zones, where a generic
effective stiffness function is obtained by following a single tooth
pair for three complete mesh cycles since ceil��c�=3. When �
=0 �no friction�, Ke,i�t� has a symmetric trapezoidal profile; when
high sliding friction is introduced with �=0.4, additional discon-
tinuities in the slope emerge during the transitions from Zone 1 to
Zone 2, as well as from Zone 6 to Zone 7. These correspond to the
conditions when the contact line reaches or leaves the pitch line.
Note that the stiffness functions are “continuous” in a piecewise
manner due to the gradual approaching and recess motions of the
helical gear pair. Compared with the square-wave-shaped tooth
stiffness function of a spur gear pair �5–8�, this shape should be
more favorable as lower vibroacoustic levels would be expected.

Given the piecewise stiffness Ke�t� of Eqs. �7a�–�7e�, we denote
j as the index for the jth interval �with a constant slope� and
define the generic periodic stiffness function Ke,j�t� over m piece-
wise intervals within one mesh cycle as follows:

Ke,j�t� = Ke,j�t + T� = Ke,j−1 +
Ke,j − Ke,j−1

tj − tj−1
�t − tj−1� �8�

For the sample case with individual Ke,i�t� �i=0, . . . ,2� of Fig. 3,
the combined stiffness functions Ke,j�t� �j=1, . . . ,6� are calculated
over six contact regions within one mesh cycle. Since the slope is

constant within each region, only the stiffness values Ke,j at the
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tarting and ending time instants are needed with Ke,6=Ke,0 due to
he periodicity. The time instants ti of each region within one
eriod could be determined based on Fig. 2 as follows: t0=0, t1
�LEH /��T, t2= �LCQ /��T, t3= �LCD /��T, t4= �LAP /��T, t5
�LEG /��T, and t6=T. Table 1 lists the relationship between the

ix contact regions defined for the combined stiffness functions
e,j�t� and the eight contact zones defined for individual meshing

ooth pairs as given by Ke,i�t�. Although the number of contact
ones/regions depends on the gear geometry, the proposed mod-
ling strategy could be easily applied to other helical geared sys-
ems.

Figure 4 compares the combined Ke,j�t� and individual Ke,i�t�
unctions over one period. Observe that the profile of Ke,j�t� re-
embles those of individual Ke,i�t�: Under zero friction, Ke,j�t�
ollows a symmetric trapezoidal pattern, where four piecewise
ntervals exist within one mesh cycle. When the sliding friction is
ncluded, two additional discontinuities in the slope are introduced
t the transitions from Region 1 to Region 2, as well as from
egion 4 to Region 5. Hence, six piecewise regions need to be
nalyzed for one complete mesh cycle. Note that a high mean
omponent exists for the combined Ke,j�t�, whose values are al-
ays positive �nonzero�.

ig. 3 Individual effective stiffness Ke,i„t… along the contact
one, where Tmesh is one mesh cycle. Key: blue solid line, tooth
air 0 „�=0…; green solid line, tooth pair 1 „�=0…; red solid line,

ooth pair 2 „�=0…; blue dotted line, tooth pair 0 „�=0.4…;green
ashed line, tooth pair 1 „�=0.4…; and red dashed-dotted line,
ooth pair 2 „�=0.4….

able 1 Relationship between contact zones and contact re-
ions for the NASA-ART helical gear pair

Contact
region

Contact zones of Fig. 2

Pair 0 Pair 1 Pair 2

1 Z1 Z3 Z6
2 Z1 Z3 Z7
3 Z1 Z4 Z7
4 Z1 Z5 Z7
5 Z2 Z5 Z7
6 Z2 Z5 Z8
52603-4 / Vol. 130, MAY 2008
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3 Analytical Solutions by the Floquet Theory
Vaishya and Singh �6� suggested analytical solutions to a SDOF

spur gear system model with periodic square-wave stiffness. For a
helical gear pair, Ke,i�t� varies periodically in a trapezoidal pat-
tern; hence, the spur gear could be treated as a special �limiting�
case of the helical gear model �14,15� where the slope of stiffness
within each interval is zero rather than an arbitrary constant. As-
suming that 	�t�=0 �perfect involute profile� and Ce�t�=0 �un-
damped condition�, the parametrically excited system of Eqs.
�7a�–�7e� under a mean load Fe is simplified as follows:

me�̈�t� + Ke�t���t� = Fe �9�
The Floquet theory �16� is then applied to find analytical solu-

tions to both free �including the case with a viscous damping Ce

=2
e

meKe� and forced responses. For the sample case, six con-

tact regions need to be formulated with the influence of sliding
friction. Rewrite the governing equation in the state space form as

Ẋ�t� = G�t�X�t� + F�t� �10a�

G�t + T� = G�t� �10b�

G�t� = �G1�t� , 0 � t � t1

Gj�t� , tj−1 � t � tj �i = 2, . . . ,5�
G6�t� , t5 � t � T

� �10c�

X�t� = ���t�

�̇�t�
� �10d�

F�t� = � 0

Fe/me
� �10e�

The solution over one complete mesh cycle T is written in the
form of a state transition matrix �
�. For a piecewise periodic
system, this matrix may further be decomposed into 
 j over each
contact region �6� in Eq. �11�, where the functions are continu-
ously differentiable and analytical solutions to the homogeneous

Fig. 4 Piecewise effective stiffness function defined in six re-
gions within one mesh cycle with�=0.4. Key: blue dotted line,
tooth pair 0; green dashed line, tooth pair 1; red dashed-dotted
line, tooth pair 2; and black solid line, combined stiffness
function.
equation exist,
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�T,0� = 
�T,t5� · · · 
�t2,t1�
�t1,0� �11�

ach 
�tj , tj−1� is evaluated from the Wronskian matrix ��� as


�tj,tj−1� = ��tj��−1�tj−1�, tj−1 � t � tj �12a�

��t� = ��1 �2

�̇1 �̇2
� �12b�

ere, �1 and �2 are two basis solutions to the homogeneous equa-

ion Ẋ�t�=G�t�X�t�. By using the periodic property of 
, the Flo-
uet theory extends solutions to future states of the system that are
part by n mesh cycles. Thus, the state transition matrix 
�nT ,0�
ver n cycles and the resulting responses X�t� are given by


�nT,0� = 
�T,0�n �13�

X�t� = 
�t,0�X�0� +

0

t


�t,��F���d� �14a�

X�t + nT� = 
n�T,0�X�t� �14b�
Equations �11�, �12a�, �12b�, �13�, �14a�, and �14b� are of im-

ortance. First, they drastically reduce the computational time
ince the results calculated for one mesh cycle can be easily ex-
ended to other periods by using matrix multiplication, which is
omputationally effective. Second, it allows an easier inversion of
he matrix.

3.1 Response to Initial Conditions. Knowledge of the free
esponse to initial conditions is important in assesing the dynamic
tability property of the helical gear pair. Within each interval
j−1� t� tj, Eq. �9� can be rewritten in the homogeneous form as

�̈�t� + �aj − 2qj�−
2t

tj − tj−1
+ 1����t� = 0,

tj−1 � t � tj �j = 1, . . . ,6� �15a�

� j =
1

me
�Kj − Kj−1

tj − tj−1
� �15b�

� j =
Kj−1

me
− � jtj−1 �15c�

aj = � j +
� j�tj − tj−1�

2
�15d�

qj =
� j�tj − tj−1�

4
�15e�

ith a change of variable zj =� j +� jt, Eqs. �15a�–�15e� are con-
erted into the Stoke’s equation �16� as

d2�

dzj
2 +

zj

� j
2� = 0 �16�

set of basis solutions are known over tj−1� t� tj

�1�t� = 
zjJ1/3�� j� �17a�



�2�t� = zjJ−1/3�� j� �17b�
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where � j =2zj
3/2�3� j�−1 and J�1/3�� j� are the Bessel functions of

the first kind of order �1 /3. We use the recurrence relation of
Bessel functions to find the Wronskian matrix as

� j�t� = �
zjJ1/3�� j� 
zjJ−1/3�� j�
zjJ−2/3�� j� − zjJ2/3�� j�

� �18a�

� j
−1�t� = −

2�

3
3� j
� − zjJ2/3�� j� − 
zjJ−1/3�� j�

− zjJ−2/3�� j� 
zjJ1/3�� j�
� �18b�

Note that Eqs. �17a�, �17b�, �18a�, and �18b� are valid only for the
conditions with zj �0. For cases in which zj are negative �or zero�,
the Wronskian matrices are derived in terms of the modified
Bessel functions of the first kind �or gamma functions�, which
could be treated in a similar matter. However, for the SDOF he-
lical gear model with a high positive mean component, all zj have
positive values so that Eqs. �17a�, �17b�, �18a�, and �18b� hold.
Also, for intervals with a negative slope � j �such as contact re-
gions 4 and 5 of Fig. 4�, the corresponding � j also has negative
values, which lead to complex � j�t� generated by the Bessel func-
tions in Eqs. �17a�, �17b�, �18a�, and �18b�. Nevertheless, due to
the supplemental phase relationship between ��tj� and �−1�tj−1�,
the state transition matrix 
�tj−1 , tj�=��tj��−1�tj−1� still assumes
real values within each interval tj−1� t� tj. Thus, responses to

initial conditions X�0�= ���0� , �̇�0��T are derived in Eq. �19�,
where 
�T ,0� is the discrete transition matrix. Here, 
�t−nT ,0�
needs to be evaluated, similar to Eq. �11� over the last cycle,

X�t� = 
�t − nT,0�
�T,0�nX�0� �0 � t − nT � T� �19�
Figure 5 compares the homogeneous responses given in initial

−6

Fig. 5 „a… Effective stiffness. „b… homogeneous response pre-
dictions within two mesh cycles, given x0=2Ã10−6 in. and v0
=20 in./s at �p=1000 rpm. Key: green dotted line, �=0; red
dashed-dotted line, �=0.2; black dashed line, �=0.4 „analytical
solution by the Floquet theory…; blue solid line, �=0.2 „numeri-
cal solution….
conditions x0=2�10 in. and v0=20 in. /s at �p=1000 rpm, as
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redicted by using the Floquet theory and the numerical solution
based on the Runge–Kutta scheme �17��. Since the numerical
olution completely overlaps with the Floquet theory prediction,
nly one pair of comparative results are given with �=0.2 in Fig.
�b�. Observe that increasing sliding friction changes the slopes of
he effective stiffness function Ke,j�t�, while such effect does not
eem to be significant for the DTE response. This is because the
ndamped responses are dictated by the dynamic components at

he system natural frequency fn=
K̄e / �2�
me�, where K̄e is the
veraged stiffness. For the sample case, fn is found to be close to
.5fm, where fm is the mesh frequency at �p=1000 rpm. Side-
ands around 8.5fm and 10.5fm may also be present due to modu-
ation effects.

The damped homogeneous response could also be derived by

ssuming Ce,i�t�=2
e
meKe�t��2
e

meK̄e=Ce0 with a time-

veraged viscous damping Ce0. Thus, Eqs. �7a�–�7e� is converted
nto the constantly damped homogeneous form as follows:

me�̈d�t� + Ce0�̇d�t� + Ke�t��d�t� = 0 �20a�

y defining the transformation �d�t�=��t�e−Ce0t/2

��t�e−
e

K̄et/
me, Eq. �20a� is further converted into the following

xpression:

me�̈�t� + �1 − 
e
2 K̄e

Ke�t�
�Ke�t���t� = 0 �20b�

ince K̄e /Ke�t��1 for small viscous damping �say, 
e=5%�, its
quare value �2.5�10−3� is negligible compared with 1. Hence,
q. �20b� assumes the same form as the undamped Eqs.

15a�–�15e�, and it should have the same solution. This implies
hat for an oscillator with small viscous damping, the damped
omogeneous response could be calculated as follows, where ��t�
s the analytical solution to the undamped system:

�d�t� = ��t�e−
e

K̄e/met �21�

Figure 6 shows that the analytical prediction of the damped

omogeneous response with a constant Ce0=2
e

meK̄e correlates

ell the numerical simulation with a time-varying Ce�t� of Eq.
7d�. Here, the Ke�t� profile is the same as that illustrated in Fig.
�a�, with �=0.2. This implies that Eq. �21� could be used to
pproximate the homogeneous response with periodically varying
tiffness and viscous damping parameters.

3.2 Forced Periodic Response. For the LTV system of Eq.
9�, 
 could be applied to compute the response under a periodic
xcitation. The tractability of the solution depends on both the
haracteristics of the excitation and the nature of 
. In general,
his problem is solved by expanding the forcing function as well
s the time-varying parameters in terms of Fourier series. Clearly,
his will lead to errors due to truncation of modes and also sig-

ificantly increase the computations �6�. For the sample helical

ach piecewise linear segment as follows, where �0=�+nT,
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gear pair, three �or six� piecewise linear segments need to be
considered for each mesh cycle without �or with� the influence of
sliding friction. All integrals associated with the Floquet theory
could be analytically found under a mean torque excitation. How-
ever, as the number of piecewise linear segments increases within
the mesh cycle, such as for the realistic stiffness profile, analytical
solutions could become computationally expensive. The forced
response is formulated as follows:

X�t� = ��t��−1�t�X�0� +

0

t

��t��−1���F���d� �22�

Since the initial condition response ��t��−1�t�X�0� has already
been derived in Eq. �19�, only the forced response needs to be
derived by applying 
�t ,0�=
�t ,��
�� ,0� for any �,

X�t� = 
�t,0��

0

nT


−1��,0�F���d� +

nT

t


−1��,0�F���d��
= 
�t,0��H1�n� + H2�t�� �23�

The solution is found in two parts, including the integral number
of mesh cycles �H1� and the last cycle �H2� �6�. For n complete
cycles, the expression for H1�t� is given as

H1�n� = 	
i=1

n 

�i−1�T

iT


i
−1��,0�F���d� �24�

Fig. 6 Predictions of damped homogeneous responses within
two mesh cycles, given x0=2Ã10−6 in., v0=20 in./s, and �
=0.2 at �p=1000 rpm. Key: blue solid line, analytical solution
by the Floquet theory with Ce0; red dashed-dotted line, numeri-
cal with Ce„t….
We define �0=�+ �i−1�T and apply the Floquet theory such that
H1�n� = 	
j=1

n ��
−1�T,0�� j−1��1�t0�

0

t1

�1
−1���F��0�d� + �1�t0��1

−1�t1��2�t1�

t1

t2

�2
−1���F��0�d�

+ �1�t0��1
−1�t1��2�t1��2

−1�t2��3�t2�

t2

t3

�3
−1���F��0�d� + ¯ �� �25�

For the last time cycle, the value of H2�t� depends on the time instant t in the whole mesh cycle. Hence, solutions are derived within
Transactions of the ASME
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H2�t� = �
−1�T,0��n��1�0�

0

t−nT

�1
−1���F��0�d��

= �
−1�T,0��n

��
�1�0�


t1

t−nT

�1
−1���F��0�d� �t0 � t − nT � t1�

��1�0�

0

t1

�1
−1���F��0�d� + �1�0��1

−1�t1��2�t1�

t1

t−nT

�2
−1���F��0�d�� �t1 � t − nT � t2�

¯

��1�0�

0

T

�1
−1���F��0�d� + ¯ + �1�0��1

−1�t1��2�t1��2
−1
¯ � j�tj−1�


tj−1

t−nT

� j
−1���F��0�d�� �tj−1 � t − nT � tj, t6 = T�

�
�26�
ll matrices in Eq. �26� have been analytically derived, except for
he ��−1���F���d� integral, which could be analytically found by
sing Eqs. �27a�–�27h�, where LommelS1 is the Lommel function
18�. Note that the constant forcing function F�t�= �0 Fe /me�T

ould be taken out of the integral,


 zJ2/3���dt = − 
zJ−1/3��� �27a�


 − 
zJ−1/3���dt =
4�

3
J−1/3���L1 + �J−4/3���L2 �27b�


 zJ−2/3���dt = 
zJ1/3��� �27c�


 
zJ2/3���dt = −
2�

3
J1/3���L3 − �J−2/3���L4 �27d�

L1 = LommelS1�− 1,− 4
3 , 2

3�z3/2� �27e�

L2 = LommelS1�0,− 1
3 , 2

3�z3/2� �27f�

L3 = LommelS1�− 1,− 2
3 , 2

3�z3/2� �27g�

L4 = LommelS1�0, 1
3 , 2

3�z3/2� �27h�

Analytical predictions of forced responses by using Eqs. �22�-
26�, and �27a�–�27h� compare well with numerical results in Fig.
, given Ce�t�=0, x0=2�10−6 in., v0=20 in. /s, Tp=2000 lb in.,
=0.2, and �p=1000 rmp. Here, the Ke�t� profile is the same as

n Fig. 5�a�, with �=0.2; thus, six piecewise contact regions are
onsidered within each mesh cycle. Similar to the undamped ho-
ogeneous response, the forced responses are also dominated by

he dynamic component at the system natural frequency and some
idebands due to the modulation effect. Such resonances, how-
ver, are controlled by the viscous damping, which may have
egligible effects on the mesh harmonics. Consequently, if the
esh harmonics do not coincide with the resonant frequency, one

an approximate the damped dynamic responses by filtering out
he resonant components from the undamped responses in fre-
uency domain. For example, a low pass filter is used since fn

fm.
Analytical predictions of �undamped� forced responses are

ompared in Fig. 8 with numerical simulations obtained from a
iscously damped SDOF model as well as a 6DOF model, which

s similar to the 12DOF model in Ref. �1�. A comparison of

ournal of Mechanical Design

ded 17 Apr 2008 to 129.137.163.162. Redistribution subject to ASM
steady-state time domain responses in Fig. 8�a� shows that the
numerical simulation of the DTE predicted by the SDOF model
matches well with that of the 6DOF model despite an offset in the
mean component. Also, a viscous damping coefficient of 5% tends
to “remove” the dominant resonant components �as compared to
the mesh harmonics� from the undamped forced response. Next,
the steady-state time responses are converted into frequency do-
main, and Fig. 8�b� �where the static term is cut off� shows that
predictions at the first five mesh harmonics of the undamped sys-
tem match very well with the spectra of viscously damped re-
sponses calculated by numerical integration. This suggests that the
analytical solution could be extended to examine the damped dy-
namic response in frequency domain.

Figure 9�a� shows the predicted mesh harmonics of DTE as a
function of �. Observe that an increase in � has the most signifi-
cant effect on the first two mesh harmonics. Figure 9�b� shows the
derivatives of DTE harmonics with respect to �; these are ap-
proximated by the finite difference method, i.e., d� /d�����n�
−��n−1�� / ���n�−��n−1��. Observe that the second harmonic
has the highest increasing rate, followed by the first harmonic.
Moreover, since the amplitude at the second harmonic without
friction ��=0� is much smaller than that of the first harmonic, it is

Fig. 7 Predictions of „undamped… forced periodic responses
within two mesh cycles, given x0=2Ã10−6 in., v0=20 in./s, Tp
=2000 lb in., and �=0.2 at �p=1000 rpm. Key: blue solid line,
analytical solution by the Floquet theory; red dashed-dotted

line, numerical solution.
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mplied that sliding friction has more influences on the second
armonic. This is consistent with the results predicted by the
2DOF formulation �1�.

Conclusion
This paper extends the earlier work of Vaishya and Singh �6� by

pplying the Floquet theory to a helical gear pair to examine the
ffect of sliding friction on the DTE. In particular, the LTV for-
ulations �with parametric excitations� have been developed for a
DOF model, and the effect of sliding friction is quantified as
arametric excitations of effective mesh stiffness. The Floquet
heory has been successfully applied to obtain closed-form DTE
olutions, given periodic and piecewise linear stiffness functions.
esponses to both initial conditions and forced periodic functions,
nder a nominal preload, are derived. Analytical models have
een validated by comparing predictions with numerical simula-
ions. Although the coefficient of friction � is assumed to be high
or the sample case for illustrative purposes, the same algorithm
ould be implemented under realistic conditions when a smaller
alue of � is expected. Overall, the sliding friction has a marginal
ffect on the DTE of helical gears, as compared with spur gears
8�, at least in the context of the torsional model. Finally, para-
etric instability issues are briefly examined as follows.
symptotic stability of a homogeneous system can be determined

rom the discrete transition matrix 
 over one complete period of
arametric changes �6�. A sufficient condition for stability is that
ll the eigenvalues � of the 
�T ,0� matrix have absolute values
ess than unity �16�. For the sake of illustration, Fig. 10 shows the

apping of maximum � �absolute value� as a function of the ratio
f time-varying mesh frequency fm�t� to the system natural fre-
uency fn, without viscous damping. Observe that the most domi-
ant unstable region emerges when fm�t� / fn�2; such parametric
nstability is well explained by Den Hartog �19�. Other unstable
egions are found when the ratio of fm�t� / fn is close to 1, 2 /3,

ig. 8 Steady-state forced periodic responses given x0=2
10−6 in., v0=20 in./s, Tp=2000 lb in., and �=0.1 at �p
1000 rpm: „a… DTE versus time; „b… DTE spectra. Key: blue
olid line with �, undamped analytical prediction; black dotted
ine with �, damped numerical simulation of the SDOF system
ith �e=5%; red dashed-dotted line with �, damped numerical
imulation of a 6DOF model with �e=5% „with mean component
ompensated….
/3, etc. Also, an increase in � tends to enhance the max�����
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value in the most dominant unstable region around fm�t� / fn�2; in
addition, it decreases the 1 /3 peak while enhancing the peak
around 1. When the system operates near unstable regions, various
stability performances could be observed though these results are
not shown here. For instance, when fm�t� / fn is close to 2 �say, at
18,000 rpm�, long term stability performance is observed. On the
other hand, when fm�t� / fn falls within the unstable region �say, at
19,000 rpm�, the homogeneous response grows unbounded.

Fig. 9 Predicted mesh harmonics of „undamped… forced peri-
odic responses as a function of �, given x0=2Ã10−6 in., v0
=20 in./s, and Tp=2000 lb in. at �p=1000 rpm: „a… DTE; „b…
slope of DTE. Key: blue line with �, n=1; green line with �, n
=2; red line with Ã, n=3; and cyan line with �, n=4.

Fig. 10 Mapping of eigenvalue � „absolute value… maxima as a
function of the ratio of time-varying mesh frequency fm„t… to the
system natural frequency fn. Key: —, �=0.01; -·-, �=0.1; and ¯,

�=0.2.
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