Development and validation of vibroacoustic models of irregular plates

Douglas D. Crimaldi and Rajendra Singh
J. Acoust. Soc. Am. 102, 3113 (1997); http://dx.doi.org/10.1121/1.420556

Abstract

Irregularly shaped cover plates used in automotive gearboxes receive vibration energy generated by meshing gears, resonantly amplify and radiate sound at many frequencies. To reduce the vehicle noise levels, a metal–plastic–metal composite plate with a constrained viscoelastic layer may be utilized. Due to the complex nature of the structure, nonuniform material properties and bolted boundary conditions, it is difficult to develop vibroacoustic models. Hence, two simplified covers must be studied first: a stamped steel cover with identical geometry and nonuniform material properties and a modified flat cover which simplifies the geometry while providing uniform material properties including thickness. Each cover is studied with free and bolted boundary conditions. A new model of the bolted connection is described and implemented. Finite element and boundary element models for each cover are developed and validated based on the experimental modal analysis and sound directivity results.

© 1997 Acoustical Society of America
DOI: http://dx.doi.org/10.1121/1.420556

Key Topics

Materials properties
Acoustic modeling
Boundary value problems
Acoustic noise
Acoustic resonance

Most read this month

Differences in acoustic features of vocalizations produced by killer whales cross-socialized with bottlenose dolphins
Whitney B. Musser, Ann E. Bowles, Dawn M. Grebner and Jessica L. Crance

Evaluation of smartphone sound measurement applications

Chucri A. Kardous and Peter B. Shaw

Coffee roasting acoustics

Preston S. Wilson

Most cited this month

Transformed Up-Down Methods in Psychoacoustics

H. Levitt

Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range

M. A. Biot

Stimulated acoustic emissions from within the human auditory system

D. T. Kemp