Nonlinear load-deflection and stiffness characteristics of coned springs in four primary configurations

Nicholas P. Mastricola, Rajendra Singh*

Acoustics and Dynamics Laboratory and Smart Vehicles Concepts Center, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA

1. Introduction

Coned disk springs (as shown Fig. 1a), a subset of the diaphragm spring family, have been in use in machine design (such as preload elements) for over a century. Since they are highly customizable at an element level as attested to by a myriad of diaphragm springs produced [1–5], the stackable nature of disk springs allows for easy modification of the gross stiffness and damping parameters of a stack. The inherent adaptability of the disk spring's stiffness is especially unique because it can be made positive, zero, or negative [3,5–7]. The nonlinear stiffness exhibited by quasi-zero stiffness mechanisms has been conceptually found to be advantageous for several vibration isolation studies [8–13] though the disk spring is not explicitly mentioned. The literature focusing on disk springs is very sparse and primarily limited to static analyses presented from a design viewpoint [4,6–7,14–19]. In particular, the seminal paper of Almen and Laszlo [6] established the disk spring load-deflection relationship which remains as the theoretical groundwork for most subsequent disk spring research. Almen and Laszlo [6], heavily influenced by a simplified problem proposed by Timoshenko [14], made the following key assumptions: (i) the disk spring cross-section is small; (ii) the disk spring cross-section remains constant during the deformation process, but merely rotates about a neutral point; and (iii) the loads are distributed evenly around the disk spring in an an-
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Mid-surface outer radius</td>
</tr>
<tr>
<td>(b)</td>
<td>Mid-surface inner radius</td>
</tr>
<tr>
<td>(c)</td>
<td>Neutral circle radius</td>
</tr>
<tr>
<td>(E)</td>
<td>Young’s modulus</td>
</tr>
<tr>
<td>(h)</td>
<td>Cone height</td>
</tr>
<tr>
<td>(k)</td>
<td>Analytically determined stiffness</td>
</tr>
<tr>
<td>(k)</td>
<td>Piecewise nonlinear stiffness</td>
</tr>
<tr>
<td>(M)</td>
<td>Moment</td>
</tr>
<tr>
<td>(n)</td>
<td>Number of springs</td>
</tr>
<tr>
<td>(P)</td>
<td>Spring force resultant</td>
</tr>
<tr>
<td>(x)</td>
<td>Displacement</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Radii ratio ((a/b))</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Cone base angle</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Axial spring deflection</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>End point of stiffness regime</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>Strain</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Cone height to thickness ratio ((h/t))</td>
</tr>
<tr>
<td>(\theta)</td>
<td>General angle</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>Slope of linear stiffness model section</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Static coefficient of friction</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Stress</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Shell thickness</td>
</tr>
<tr>
<td>(\Upsilon)</td>
<td>Comparison model</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>Relative rotational displace of disk spring cross-section</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>Displacement regime</td>
</tr>
<tr>
<td>(\psi)</td>
<td>Planer angle of disk spring</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Outer edge</td>
</tr>
<tr>
<td>(b)</td>
<td>Inner edge</td>
</tr>
<tr>
<td>(D)</td>
<td>Disk spring</td>
</tr>
<tr>
<td>(e)</td>
<td>Edge</td>
</tr>
<tr>
<td>(E)</td>
<td>Experiment</td>
</tr>
<tr>
<td>(F)</td>
<td>Friction (includes friction)</td>
</tr>
<tr>
<td>(Flat)</td>
<td>Related to the disk spring or stack in the flat position</td>
</tr>
<tr>
<td>(H)</td>
<td>Linear helical spring</td>
</tr>
<tr>
<td>(L1)</td>
<td>Literature – Ref. [6]</td>
</tr>
<tr>
<td>(L2)</td>
<td>Literature – Ref. [19]</td>
</tr>
<tr>
<td>(L3)</td>
<td>Literature – Ref. [26]</td>
</tr>
<tr>
<td>(n)</td>
<td>Fundamental</td>
</tr>
<tr>
<td>(p)</td>
<td>Relating to the parallel disk spring contact</td>
</tr>
<tr>
<td>(P)</td>
<td>Manifests due to spring force</td>
</tr>
<tr>
<td>(r)</td>
<td>Radial component</td>
</tr>
<tr>
<td>(R1)</td>
<td>Reaction due to radial displacement</td>
</tr>
<tr>
<td>(R2)</td>
<td>Reaction due to change in curvature</td>
</tr>
<tr>
<td>(t)</td>
<td>Tangential component</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Face or interfacial</td>
</tr>
</tbody>
</table>

nularly symmetric fashion. Several aspects of the Almen-Laszlo relationship were re-examined by researchers [7,15–16] who specifically focused on practical design methodology.

Curti et al. [17–20] noted that Almen and Laszlo correctly assumed that radial stress \(\sigma_r\) is negligible \((\sigma_r = 0)\); nevertheless, radial strain \(\varepsilon_r\) was considered to be negligible \((\varepsilon_r = 0)\) throughout the Almen–Laszlo derivation. Curti and Orlando [17–18] derived an alternate analytical load-deflection relationship by treating the coned disk spring as a flat plate of small thickness with a hole and coupling the radial and tangential stresses. Their derivation [17–18] resulted in a load-deflection expression which differed from the Almen–Laszlo [6] relationship by a multiplicative factor of \(1 - \nu^2\), where \(\nu\) is Poisson’s ratio. Subsequently, Curti et al. [19] achieved the same result through a greatly simplified, but more illustrative, means of correctly applying within a framework similar to that of Almen and Laszlo [6].
Additionally, only a limited number of experimental studies have been reported in the literature \cite{2,6,17–26} in the context of validation and verification of analytical expressions; however, most measurements data sets were limited to the midrange displacements such that the initial loading phase and ending stopper phase could be avoided. Also, assumptions have been made in literature as to the behavior of the disk spring as a singular element or as an entity within a disk spring stack. Wahl \cite{7}, to the best of the authors’ knowledge, published the first measurement, which included the aforementioned terminal effects and was accompanied by heuristic comparison to the Almen–Laszlo load-deflection relationship \cite{6}. Curti et al. \cite{21} made a similar comparison between their experiment and analytical expressions suggested by Almen and Laszlo \cite{6} as well as Curti et al. \cite{18–19}. Other experimental studies \cite{22–26, 28} have largely focused on characterizing the nature of friction at the disk spring boundaries and the determination of its effect.

The influence of disk springs on the dynamics of physical systems has been studied to a much lesser extent. For example, Bühl \cite{27} characterized the general loss properties of a disk spring stack by determining a damping coefficient using the logarithmic decrement method for a range of preloads. Ozaki et al. \cite{28} performed quasi-static characterization of disk spring stacks for the purpose of constructing a computational (finite element) model of the disk spring where both dry friction and viscous damping were lumped into a general energy dissipation term. Numerical studies, using the proposed finite element method model, were conducted on a simple mass-spring oscillator and transmissibility curves that exhibited stiffening behavior were predicted \cite{28–29}.

To overcome certain voids in the literature, the chief goal of this article is to experimentally and analytically characterize the nonlinear load-deflection relations and to clarify the stiffness regimes and their transition points. The scope of this paper is limited to commercially available square-edged disk springs which are stackable in primary configurations as displayed in Fig. 2 and listed in Table 1. The entire displacement range is considered, from fully unloaded height to flat height, and friction will be accounted for at the face-to-face disk spring contacts (in parallel stack configurations) and at the disk spring edge-to-surface contacts, but will be ignored in edge-to-edge contacts.

2. Problem formulation

The focus of this article is confined to the examination of single disk springs and stacks assembled from two disk springs in the primary stack configurations as shown in Figs. 2a–c and named in Table 1. The specific objectives are: first, measure the full-range load-deflection characteristic of a disk spring and primary stack configurations and analyze them in terms of their naturally arising transition points and hysteretic behavior; second, propose a refined disk spring load-deflection formulation with edge and interfacial friction and to compare predictions with measurements; and third, examine the stiffness

Fig. 1. Coned disk spring element: (a) Square-edged element (configuration \(Y_s\)); (b) overhead and cross-section view of a coned disk spring with standard geometric parameters and load points. Key: \(\uparrow\) force, \(\downarrow\) deformed position of cross-section. Remaining symbols are defined in the text and in the Nomenclature section.
nonlinearity and propose distinct regimes. Full-range load-deflection characteristics of the disk spring and primary stack configurations (from unloaded height to flat height) are experimentally acquired, under quasi-static loading conditions, using the apparatus shown in Fig. 3. The experimental results will be analyzed from a load-deflection perspective (in terms of transition point location and hysteresis), and in terms of their stiffness characteristics. The stiffness results presented herein will be compared to the prior literature, including a few studies which use similar nonlinear stiffness characteristics without the use of disk springs.

The following classical assumptions [6] for analyzing disk springs will be applied throughout the presented experimental and analytical work such that the analytical and experimental methods used can draw upon, and be compared with, prior studies on equal footing — (i) the disk spring cross-section is small; (ii) the disk spring cross-section rotates about a neutral point and does not deform during the loading or unloading process; and (iii) forces are evenly distributed about the disk spring edges in an annularly symmetric fashion. Additionally, friction between disk spring edges and the platen faces (Fig. 3) and at interfacial contacts between disk spring faces — configuration Υ_2 (Fig. 2a) — will be considered throughout the analysis. However, the friction at disk spring edge-to-edge contacts is considered negligible.

3. Analytical load-deflection relationships of primary disk spring stacks

The Almen-Laszlo load-deflection relationship [6] for a single disk spring is formulated through the moment equilibrium condition (with reference to Fig. 1b) as

$$dM_p = dM_{R1} + dM_{R2},$$

where differential moment dM_p, arises from the reaction force P, dM_{R1} is the radial displacement reaction moment, and dM_{R2} is the reaction moment which manifests from the change in curvature. In Eq. (2), dM_p is expressed in terms of disk spring thickness t; cone base angle β; relative rotational displacement φ; planer angle ψ; and the inner and outer mid-surface radii a and b, respectively. Note that the simplifying approximations $\cos(\beta - \varphi) \approx 1$ and $\sin(\beta - \varphi) \approx \tan(\beta - \varphi) \approx \beta - \varphi$ are applied since both β and φ are small.

$$dM_p = \frac{P}{2\pi}[(a - b) - t\sin(\beta - \varphi)] \cdot d\psi \approx \frac{P}{2\pi} (a - b) \cdot d\psi. \quad (2)$$

Next, dM_{R1} and dM_{R2} are expressed in the same manner as dM_p with the addition of Young’s modulus E and the radii ratio α, where $\alpha = a/b$.

$$dM_{R1} = E \tau \varphi (\beta - \varphi) \left[\frac{\beta - \varphi}{2} \left\{ \frac{a^2 - b^2}{2} - \frac{(a - b)^2}{4\alpha} \right\} \right] \cdot d\psi$$

$$dM_{R2} = E \tau \varphi (\beta - \varphi) \left[\frac{\beta - \varphi}{2} \left\{ \frac{a^2 - b^2}{2} - \frac{(a - b)^2}{4\alpha} \right\} \right] \cdot d\psi$$

Fig. 2. Typical stack configurations using two coned disk elements: (a) parallel (configuration Υ_2); (b) inner series (configuration Υ_1); and (c) outer series (configuration Υ_4). Refer to Table 1 for a summary of the configurations analyzed in this article.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Stack configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υ_1</td>
<td>Single disk spring (Fig. 1)</td>
</tr>
<tr>
<td>Υ_2</td>
<td>Parallel stack (Fig. 2a)</td>
</tr>
<tr>
<td>Υ_3</td>
<td>Inside edge series stack (Fig. 2b)</td>
</tr>
<tr>
<td>Υ_4</td>
<td>Outside edge series stack (Fig. 2c)</td>
</tr>
</tbody>
</table>

* The R8 ball bearing disk springs are used throughout this article (purchased from McMaster-Carr on www.mcmaster.com).
Fig. 3. Quasi-static experiment proposed to measure the load-displacement curve of coned disk springs. Key of components: (1) high resolution LVDT, (2) force transducer, (3) upper platen, (4) disk spring or stack, (5) lower platen, (6) centering support assembly, (7) power screw, (8) tensioning support band, (9) power screw body, and (10) rigid outer support, where → is the line of action of the power screw.

Substitution of Eqs. (2)–(4) into Eq. (1), with the axial spring deflection, yields the well-known Almen–Laszlo relationship [6]

\[P_{L1}(\delta) = \frac{E\delta\pi}{1-v^2}a^2 \left(\frac{\alpha}{\alpha-1} \right)^2 \left[\tau(h-\delta) \left(h - \frac{\delta}{2} \right) \left(\frac{\alpha + 1}{\alpha - 1} - \frac{2}{\ln \alpha} \right) + \frac{\tau^3 \ln \alpha}{6} \right]. \]

(5)

Using two separate methods, the Almen–Laszlo expression was simplified by Curti et al. [17–19] to

\[P_{L2}(\delta) = \frac{E\delta\pi}{1-v^2}a^2 \left(\frac{\alpha}{\alpha-1} \right)^2 \left[(h-\delta) \left(h - \frac{\delta}{2} \right) \left(\frac{\alpha + 1}{\alpha - 1} - \frac{2}{\ln \alpha} \right) \tau + \frac{\tau^3 \ln \alpha}{6} \right]. \]

(6)

Curti et al. [26] modified Eq. (6) to include the edge friction using an analogous method to that used by Almen and Laszlo [6], which takes the form

\[P_{L3}(\delta) = \frac{P_{L2}(\delta)}{1 + \mu_e \frac{(h-\delta)^2}{a-b}}, \]

(7)

where \(\mu_e \) is the coefficient of friction at the disk spring edge. Niepage [24] added a term for edge friction and disk spring face-to-face friction, though this was accomplished by rather tedious algebraic means.

In this article, Eq. (7) is modified to include face-to-face friction by a more compact method which is a closer analog to the methods used in prior formulations [6, 17–19, 26]. Hence, the friction between disk spring faces in the parallel configuration (Fig. 2a) and the disk spring edge to surface friction — in the cases of the single disk spring (Fig. 1a) or series stacks (Figs. 2b–c) — are accounted for by formulating appropriate differential moment terms, which can be added to Eq. (1). Thus,

\[\text{d}M_p = \text{d}M_{R1} + \text{d}M_{R2} + \text{d}M_{\phi F} + \text{d}M_{e F}. \]

(8)
where $dM_{\phi F}$ is the differential moment due to the face-to-face disk spring friction and dM_{EF} is the differential moment due to the friction between the disk spring edge and its supporting surface. Both $dM_{\phi F}$ and dM_{EF} may be written in the form of the other differential moments with the addition of the coefficients of friction between the disk spring faces and the disk spring edge to surface contact μ_{ϕ} and μ_e, respectively — and the number of parallel contacts (n_p) between disk springs in a stack as

$$dM_{\phi F} = \pm \mu_{\phi} \frac{P \cos(\beta - \varphi) n_p \tau}{2\pi} \cdot d\psi \approx \pm \mu_{\phi} \frac{P n_p \tau}{2\pi} \cdot d\psi$$

and

$$dM_{EF} = \frac{\mu_e P}{2\pi} [(a - b) \tan(\beta - \varphi) + \tau \cos(\beta - \varphi)] \cdot d\psi$$

$$\approx \frac{\mu_e P}{2\pi} [(a - b)(\beta - \varphi) + \tau] \cdot d\psi.$$

The more general load-displacement relationship is then found, as shown in Eq. (11), by applying the small angle approximations, changing the variables β and φ to their linear counterparts h and δ, and substitution into Eqs. (2)–(4) and Eqs. (9)–(10) into Eq. (8).

$$P_f(\delta) = \frac{P_{12}(\delta)}{1 + \left(\frac{\mu_e (h - b + \tau) + \mu_{\phi} \tau n_p}{a - b}\right)}$$

As should be expected, Eq. (11) does not explicitly depend on the number of disk springs in series since the disk spring edge-to-edge contacts are being considered to be essentially frictionless rolling contacts and there are only ever two disk spring edge-to-surface contacts at the terminal ends of the stack. By setting $\mu_{\phi} = 0$ or $n_p = 0$, Eq. (11) reduces to $P_{12}(\delta)$ — the result of Curti et al. [26] as shown in Eq. (7). Further, Eq. (11) is shown to reduce to $P_{12}(\delta)$, shown as derived by Curti et al. [19] in Eq. (6), by setting $\mu_e = \mu_{\phi} = 0$; therefore, Eq. (11) is a further generalization of both aforementioned formulations. Likewise, the relationships between Eqs. (5)–(6) and Eq. (11) are shown in Fig. 4 with assumed values of μ_e and μ_{ϕ}. An addition of the interfacial friction term does indeed increase the amount of hysteresis, and does so successively with increasing μ_{ϕ}. As one should expect, Fig. 4 also shows that Eqs. (5)–(6) are incapable of accurately describing the parallel contacts between disk springs. Eq. (11) will, therefore, be used to assess the role of interfacial friction in hysteresis of disk springs stacked in parallel. Measurements will be used to quantify the values of both μ_e and μ_{ϕ}.

4. Experimental method

Disk springs are low profile and small footprint devices that, by their nature, are able to produce extreme forces at relatively low displacements. While these unique qualities have been leveraged considerably in their use as preload devices [1, 5–7] and show great promise in use as vibration isolation elements [8–13], the orders of magnitude scale difference in...
5. Measured full-range load-deflection characteristics and comparison with theory

The measurements obtained from the single disk spring configuration (ϒ₁) using the quasi-static test apparatus (Fig. 3), are shown in Fig. 5a. These are normalized by the theoretically predicted flattening load P_{Flat}, as derived for a single disk spring [3]

$$P_{\text{Flat}} = \frac{\pi E h r^2}{a} \left(\frac{\alpha + 1}{\alpha - 1} - \frac{2}{\ln \alpha} \right) \left(\frac{\alpha}{\alpha - 1} \right)^2.$$

Fig. 5. Measured load-deflection (normalized) characteristics for four configurations of Table 1 and Figs. 1 and 2: (a) Υ_1, (b) Υ_2, (c) Υ_3, and (d) Υ_4. Key: measured loading and unloading characteristics, computed median characteristic from measurements.
As one should expect, disk springs in parallel (Fig. 2a) will add just as two linear springs with a negligible increase in the amount of deflection required. As such, the measured load-displacement characteristics of configuration \(\gamma_2 \) (Fig. 5b) are normalized by \(2F_{\text{flat}}^* \). Due to the nature of disk springs, series stacks (Figs. 2b–c) will have the same flattening load as a single disk spring; however, they will require twice the deflection. Thus, the load-deflection measurements obtained from configurations \(\gamma_3 \) and \(\gamma_4 \) are also normalized by \(F_{\text{flat}}^* \) and then displayed in Figs. 5c and 5d, respectively. Further, the operating deflections of \(\gamma_3 \) and \(\gamma_4 \) (Figs. 5a and 5b, respectively) are normalized by \(h \) such that \(\delta/h = 1 \). From the predicated geometric restriction, the domains of configurations \(\gamma_3 \) and \(\gamma_4 \) (Figs. 5c and 5d, respectively) are normalized by \(2h \). A consistent method is determined in order to isolate the load-deflection characteristics from extraneous data by using clear landmarks in the measurements that are indicative of the disk spring, or stack, making first contact with the force sensor and at the point of total flatness. The load-deflection characteristics appear to be comprised of several continuous nonlinear regimes (leading up to the point of impending flatness) and one discontinuous nonlinear regime (the so-called stopper effect witnessed at the point of impending flatness) for the characteristics obtained from configurations \(\gamma_1 \), \(\gamma_2 \), \(\gamma_3 \), and \(\gamma_4 \) (Figs. 5a and 5d), in which several additional regimes are observed. While it could be argued that the manifestation of extra regimes is a mere aberration that could easily be disregarded, they do arise in several different combinations of disk springs over multiple tests. The load-deflection characteristics shown in Fig. 5 emerge as the clear typical characteristics for their respective configurations through the testing of several different disk spring pairs. However, throughout the measurements, it has been found that a small number of disk spring pairs produce atypical curves (shown in Fig. 6). The inside series and the more unusual outside series load-deflection characteristics, Figs. 6b and 6d, respectively, show two crossings of the unloading and loading curves. This shows, for the majority of the displacement range, that these particular pairs produce higher forces during the unloading phase rather than the loading phase when in configurations \(\gamma_3 \) and \(\gamma_4 \).

Albeit possible by observation to make the assertion that there are several continuous nonlinear regimes, the majority of their transition points are, at best, indistinct. Initially, two numerical derivatives were computed with the idea that their zero-crossings or inflection points would be at or near the transition points; however, this was quickly discarded because, even after smoothing of the resulting derivatives, the fidelity of this method did not hold from measurement to measurement. However, since the majority of the load-deflection characteristics have smooth transitions between nonlinear regimes, this method was also rejected. In essence, both of the attempted methods for locating the regime transition points failed due to the fact that there are few distinct landmarks in the load-deflection characteristic that can be utilized for a consistent determination of the regime transition; therefore, it is imperative to impose a quasi-fixed reference to which the measured data could be compared. As a reference, \(P_{12}^{\delta} \) is chosen for use with the median load-deflection characteristic calculated from the measurement (Fig. 5). For the task at hand, a distinct regime is considered a section of the measured characteristic wherever it deviates in a significant manner from the analytical curve. The segments that deviate from the analytical curve are treated in a quasi-linear fashion; thus, tangent lines are constructed on the measured characteristic in order to determine the transition points between two quasi-linear continuous (nonlinear) regimes. In essence, this creates a piecewise nonlinear function since all aspects of the measurements cannot be captured in a single expression; however, the resultant is still smooth and continuous in nature.

Applying the previously mentioned method to the median load-deflection characteristic of configuration \(\gamma_1 \) (Fig. 5a), six load-deflection regimes are observed, as clearly depicted in Fig. 7a. Key results are summarized in Table 2. Regimes (or transitions) \(\Phi_1 \) to \(\Phi_3 \), \(\Phi_5 \), and \(\Phi_8 \) to \(\Phi_9 \) (reference Table 2) are called the principal regimes since they are found in all configurations. Note that \(P_{12}^{\delta} \) is offset during the initial regimes \(\Phi_1 \) and \(\Phi_2 \). This is not all together unexpected due to the classical Almen–Laszlo [6] assumption that the loads are evenly distributed about the edges of the disk spring which implies that at the beginning of the curve the disk spring has sufficient preload to bring the edges of the disk spring into even and complete contact. Conversely, these initial regimes, although not reported as such, are consistent with limited experimental data that has been reported in the prior literature [7, 19, 21, 23, 27]. In particular, Wahl [7], only showing data from a parallel stack, made the assertion that the initial regimes were caused by the flattening of irregularities between

Table 2

Summary of distinct load-displacement regimes as displayed in Fig. 7 and normalized end transition points for four configurations.

<table>
<thead>
<tr>
<th>Regime</th>
<th>Description (using measurements)</th>
<th>Regime end transition points (normalized), (\delta/h)</th>
</tr>
</thead>
</table>
| \(\Phi_1 \) | Initial engagement | \(\begin{array}{c} Y_1 = 0.0505 \
Y_2 = 0.0617 \
Y_3 = 0.0255 \
Y_4 = 0.0179 \end{array} \) |
| \(\Phi_2 \) | Transition to analytical behavior | \(\begin{array}{c} Y_1 = 0.1515 \
Y_2 = 0.1724 \
Y_3 = 0.0805 \
Y_4 = 0.0419 \end{array} \) |
| \(\Phi_3 \) | Analytical behavior | \(\begin{array}{c} Y_1 = 0.6402 \
Y_2 = 0.4896 \
Y_3 = 0.2612 \
Y_4 = 0.2431 \end{array} \) |
| \(\Phi_4 \) | Transition into primary plateau | \(\begin{array}{c} Y_1 = 0.7633 \
Y_2 = 0.8469 \
Y_3 = 0.6618 \
Y_4 = 0.5979 \end{array} \) |
| \(\Phi_5 \) | Primary plateau | \(\begin{array}{c} Y_1 = 0.8431 \
Y_2 = 0.9686 \
Y_3 = 0.8503 \
Y_4 = 0.7593 \end{array} \) |
| \(\Phi_6 \) | Transition into secondary plateau | \(\begin{array}{c} Y_1 = 0 \
Y_2 = 0 \
Y_3 = 0.8470 \
Y_4 = 0 \end{array} \) |
| \(\Phi_7 \) | Secondary plateau | \(\begin{array}{c} Y_1 = 0 \
Y_2 = 0 \
Y_3 = 0.8947 \
Y_4 = 0 \end{array} \) |
| \(\Phi_8 \) | Transition into stopper | \(\begin{array}{c} Y_1 = 0.9592 \
Y_2 = 1.037 \
Y_3 = 0.9387 \
Y_4 = 0.9367 \end{array} \) |
| \(\Phi_9 \) | Stopper (end point at \(P/\gamma_{1,\text{flat}} = 3 \)) | \(\begin{array}{c} Y_1 = 1.023 \
Y_2 = 1.068 \
Y_3 = 0.9822 \
Y_4 = 1.006 \end{array} \) |
Fig. 6 Variations in load-deflection characteristics due to disk spring pairings: (a) \(\Upsilon_2 \), (b) \(\Upsilon_3 \), (c) \(\Upsilon_4 \) — variation of standard form, (d) \(\Upsilon_4 \) — variation produced by a poorly matched pair. Key: measured loading and unloading characteristics, computed median characteristic from measurements, loading-unloading cross point.

disk springs; however, as shown in Fig. 7, this behavior is exhibited by all configurations under consideration. Hence, it is reasonable to hypothesize that regimes \(\Phi_1 \) and \(\Phi_2 \) arise from slight asymmetries or irregularities of the disk spring’s load bearing edges in configurations other than \(\Upsilon_2 \). Regime \(\Phi_3 \), as shown in Fig. 7a, is reasonably approximated by the analytical curve; however, there is a strong divergence between theory and experiment when the load-deflection characteristic plateaus (regime \(\Phi_3 \)). Likewise, \(\Phi_8 \), and \(\Phi_9 \) are not accounted for by the analytical expression because the assumption is made that the disk spring is not constrained in the vertical direction and would be allowed to travel such that \(\varphi < 0 \), which is seldom found in practical application due to the fixture considerations.

In the load-displacement measurements from configurations \(\Upsilon_2 \) and \(\Upsilon_3 \) (Fig. 7b and 7c, respectively), another transition regime \(\Phi_4 \) is observed going from \(\Phi_3 \) to \(\Phi_5 \). While the length of \(\Phi_5 \) is relatively unchanged, there is a marked shortening of regime \(\Phi_3 \), which may be attributed to yet undescribed interplay between the disk spring elements in the stack. The load deflection characteristic from configuration \(\Upsilon_4 \) (Fig. 7d), albeit seemingly more complicated due to the arising of three regimes in addition to the principal regimes, has an elegantly simple explanation. Due to the placement of regimes \(\Phi_7 \) and \(\Phi_8 \) it is possible to make the assertion that one spring in the pair is slightly more compliant than the other. This has the ramification that the weaker of the paired springs will have an increase in stiffness slightly before the other; hence, the stiffer spring in the pair will only continue to deflect once the softer spring can carry the appropriate load.
Fig. 7. Comparison of measured and analytical load-deflection characteristics and identification of multiple regimes (Φ) for four configurations: (a) ϒ₁, (b) ϒ₂, (c) ϒ₃, and (d) ϒ₄. Key: ••••• measured (computed median characteristic) from measurement, —— predicted using \(P_{\text{L}}(\delta) \) expression.

6. Hysteretic force measurements and comparison with theory

Eq. (11) is used to determine the theoretical hysteretic behavior that should be exhibited over displacement region Φ₁. From prior comparisons made in this article, it has been shown that the best agreement between theory and experiment is exhibited by configuration ϒ₁. Therefore, it can be assumed that \(\mu_e \) determined from this configuration may be applied to all of the configurations listed in Table 1 since only two disk spring edge-to-surface contacts are seen in any disk spring stack configuration. For configuration ϒ₁, Eq. (11) is applicable by setting both \(n_p \) and \(\mu_\phi \) to zero, and thereby reducing Eq. (11) to \(P_{L3}(\delta) = \text{Eq. (7)} \). The friction coefficient at the disk spring's edge, \(\mu_e \), may now be estimated by varying its value with comparison to the measured hysteresis loop of configuration ϒ₁. Sufficient agreement in \(\Phi_3 \) of ϒ₁ is observed between theoretical and measured hysteresis forces at \(\mu_e = 0.12 \), which is consistent for a galvanized steel-steel contact. The result of tuning \(\mu_e \) for the single disk spring configuration (shown in Fig. 8a) is consistent with agreement shown by Curti et al. [26] as should be expected. Likewise, as listed in Table 3, this value of \(\mu_e \) is applied to all remaining configurations as shown in Fig. 8. Without any further parameter tuning, reasonable agreement is seen in regime \(\Phi_3 \) for configurations ϒ₃ and ϒ₄. However, configurations ϒ₁, ϒ₃, and ϒ₄ all exhibit a departure of theory from measurement in the transitional regime \(\Phi_4 \); much longer transitional regimes are witnessed in both series configurations (Figs. 8c and 8d). Furthermore, after theory and measurement values diverge for configurations ϒ₃ and ϒ₄, the under-predicting trend is clearly seen from the remaining displacement regimes. To a much lesser extent, this trend is also seen in configuration ϒ₁.
Fig. 8. Measured and predicted load-displacement characteristics for four configurations of Table 1 and Figs. 1 and 2: (a) Υ_1, (b) Υ_2, (c) Υ_3, and (d) Υ_4. Key: measurement, \(\text{Eq. (11)}\) prediction.

Table 3

<table>
<thead>
<tr>
<th>Coefficient of friction</th>
<th>Disk spring stack configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_e</td>
<td>Υ_1 Υ_2 Υ_3 Υ_4</td>
</tr>
<tr>
<td>μ_ϕ</td>
<td>0.12 0.12 0.12 0.12</td>
</tr>
</tbody>
</table>

Using a similar tuning method as used for the estimation of μ_e, μ_ϕ is found to be 0.49 (Table 3) using Eq. (11) with \(n_p = 1\) for configuration Υ_2. The resulting value of μ_ϕ is consistent with published values for steel-steel contacts. Comparing the hysteresis curves of configurations Υ_1 and Υ_2 — Fig. 8a and b, respectively — a distinct increase in hysteresis is observed. Since the edge friction is assumed to be equal in all configurations, the approximate 74% increase in hysteresis loop width between configurations Υ_1 and Υ_2 can be reasonably attributed to the friction forces between the inner and outer surfaces of the disk spring. The point of comparison between was chosen to be the greatest normalized displacement in the analytical regime of configuration Υ_2. As with the other cases, a distinct divergence between theory and measurement is observed in
regime Φ_4 with the characteristic under-prediction for the remaining regimes. The under-prediction of Eq. (11) is partially due to the manner by which the disk springs are constrained during testing. Eq. (11), as well as its predecessors, assumes that the displacement will not stop at the flat position, but will continue until the spring is fully inverted. This physical limitation creates the prominent stopper effect seen in all cases. Conversely, it can also be said that the theoretical load-deflection characteristics are, in essence, based on a single continuous nonlinear relationship [6] that is inherently dependent on the disk spring symmetry, and therefore, cannot be directly modified to account for the appearance of distinct regimes.

While good agreement between theoretical and measured load-displacement characteristics is apparent (Fig. 8), the hysteretic force difference — computed by subtracting unloading and loading curves of measured load-displacement characteristics — gives more insight at much finer resolution into what the hysteretic behavior is over each regime. The measured hysteretic force differences seen in configurations γ_1, γ_3, and γ_4 (Figs. 9a, 9c, and 9d, respectively) are at similar levels, which lends credence to the assumption made when applying the determined value of μ_ϕ from configuration γ_1 to all other cases, which means that the disk springs and platen faces are relatively consistent between trials. The overall hysteretic characteristics of configurations γ_1 and γ_4 (Figs. 9a and 9d, respectively) are reasonably represented by the force difference of $P_f(\delta)$ with the determined coefficients of friction shown in Table 3. However, there is a pronounced linear behavior observed over regimes Φ_3 and Φ_4 in the measured characteristic of configuration γ_3 shown in Fig. 9c (seen to a much lesser extent in configurations γ_1 and γ_4), which is not fully captured by prior or proposed models. As should be expected from the determination of μ_ϕ (Table 3), the hysteretic force difference in configuration γ_2 is significantly higher
than any other configuration. Surprisingly, the hysteretic force difference (Fig. 9b) for the parallel stack (configuration Υ_2) is reasonably well predicted over displacement regimes Φ_2, Φ_3, and Φ_4 with theory deviating from measurement in the latter part of regime Φ_4.

The hysteresis characteristics of the atypical load-deflection measurements (Fig. 6) are computed in the same manner as described previously and the results are shown in Fig. 10. While significant differences between the load-deflection characteristics of the standard and variation of standard forms of configuration Υ_4 (Figs. 5d and 6c, respectively), deviations between these cases are minor when comparing their hysteretic force differences (Figs. 9d and 10c, respectively). Conversely, the atypical load-displacement forms of configurations Υ_3 and Υ_4 (Figs. 6b and 6d, respectively) yield a hysteresis force difference that has a negative force regime, shown in (Figs. 10b and 10d), which is due to the crossing of the loading and unloading characteristics for each of these configurations. The atypical load-deflection of configuration Υ_2 (Fig. 10a) shows a pronounced decrease in the hysteretic force from its typical counterpart (Fig. 9b), and is observed on all runs of spring pairs exhibiting these atypical load-deflection characteristics. In actuality, the hysteretic force difference of the atypical configuration Υ_2 (Fig. 10a) is closer to the hysteretic force values seen in the standard single disk spring case (configuration Υ_1 in Fig. 9a). This implies that there is hardly any relative motion between the parallel disk springs in these cases.
7. Nonlinear stiffness expression and comparisons with measurement

The displacement-dependent stiffness expression, as shown below, was presented by Almen and Laszlo [6] and was determined by differentiating Eq. (5) with respect to δ.

$$k_{11}(\delta) = \left(\frac{E\pi \tau}{(1 - \nu^2)\alpha^2}\right) \left(\frac{\alpha + 1}{\alpha - 1} \right)^2 \left(\frac{2}{\ln \alpha} - \frac{2}{\alpha - 1}\right) \left(h^2 - 3\delta h + \frac{3\delta^2}{2} + t^3\right)$$

(13)

To the best of the author’s knowledge, no further stiffness expressions have been presented in literature. Accordingly, a refined stiffness expression that is in agreement with the assumptions of this study is determined by differentiating Eq. (6) with respect to δ, and the result takes the following form.

$$k_{12}(\delta) = \left(\frac{E\pi \tau}{a^2}\right) \left(\frac{\alpha}{\alpha - 1} \right)^2 \left(\frac{\alpha + 1}{\alpha - 1} \right)^2 \left(\frac{2}{\ln \alpha} - \frac{2}{\alpha - 1}\right) \left(h^2 - 3\delta h + \frac{3\delta^2}{2} + t^3\right)$$

(14)

Minor differences between Eqs. (13) and (14) are due to slightly different load-deflection relationships on which they are based. Eq. (14) describes displacement-dependent stiffness characteristics for each configuration of Table 1. Typical comparisons between theoretical and measured stiffness parameters (as computed from the measured load-deflection data) are displayed in Fig. 11 where the continuous nonlinearity is assumed over the entire displacement range. The poorest agreement between theoretical and measured stiffness, which is largely due to the increasing range of the stiffness characteristic, is observed with configuration γ_2. As shown in Fig. 11b, theory represents only a limited range in regime Φ_3. This inaccuracy is redoubled since the range of accuracy in regime Φ_3 is in the middle; therefore, neither of the adjacent regimes is successfully predicted for configuration γ_2 in Fig. 11b. The initial stiffening, regimes Φ_1 and Φ_2, arises from the incomplete contact between disk spring and platen for all configurations; this is also observed from the force perspective in Fig. 7. For configuration γ_2, this effect is amplified because the gaps between parallel disk springs must be closed. To a much lesser extent, similar agreement is observed with configuration γ_1 in Fig. 11a; however, a significant portion of regime Φ_3 is predicted acceptably, and the character of regime Φ_4 is preserved. Much closer agreement between theory and measurement is observed in the load-deflection curves, Fig. 7a, of configuration γ_1. From the stiffness perspective, this added agreement observed with configuration γ_1 between theoretical and measured stiffness may be attributed to the stiffness characteristics changing less quickly over relatively similar actual displacements. Likewise, much closer agreement between predicted and measured stiffness is observed in both of the series cases — Figs. 11c and 11d, respectively. It can be asserted that this is because configurations γ_3 and γ_4 possess close to double the displacement ranges of either configuration γ_1 or γ_2. It is of note that the load-deflection characteristics of configurations γ_3 and γ_4, Figs. 7c and 7d, have only acceptable agreement past regime Φ_3. However, it is important that the character of the load-deflection characteristic is preserved throughout most of regime Φ_4, which is directly responsible for the observed agreement between theory and measurement based stiffness parameters of configuration γ_3 over regimes Φ_3 and Φ_4 (Fig. 11c). Considering the irregular nature of the load-deflection characteristic of configuration γ_4 (Fig. 7d) compared to the other configurations, its stiffness characteristic (Fig. 11d) shows extraordinarily good agreement between theory and measurement over regimes Φ_3, Φ_4, and Φ_5. Nevertheless, a large disparity between theory and measurement is seen in regime Φ_6 in both value and character of the curve. This observed effect is due to the disparity in stiffness between the paired springs, and is clearly seen in Fig. 7d.

It is also of note that the theoretical predictions for all configurations cross the zero stiffness line and become negative, which implies that this particular disk spring should snap through in a buckling action. Almen and Laszlo [6] have shown that the disk spring in question should have a negative spring rate when the inequality $h > \frac{\tau}{\sqrt{2}}$ is satisfied, as it is indeed done in this case. However, for configurations γ_1, γ_2, and γ_3, the appearance of a negative stiffness regime does not occur. This divergence of experimental result from prediction is due to the physical constraint of the platen not allowing the disk spring to pass through the flat to the inverted displacement regime ($\delta > h - \tau$). Conversely, the stiffness of the configuration γ_4 does cross zero, albeit to a much lesser extent in measurement than the prediction. The slight buckling action observed in the experimental configuration γ_4 is a consequence of the mismatch between disk springs. It can also be asserted that if the disk springs of configuration γ_4 were to be perfectly matched (in the sense of their respective load-displacement characteristics), the effects observed in Figs. 7d and 11d would be significantly lessened.

8. Conclusion

The chief contribution of this article is the development of nonlinear load-deflection and nonlinear stiffness formulations for a single coned disk spring, the primary parallel stack configuration, and two primary series stack configurations. Specific contributions include the following. First, unlike the prior literature [2, 6, 17–21, 26], full-range load-deflection characteristics of a disk spring and primary stack configurations have been measured and analyzed to define nine naturally occurring transition points. A refined load-deflection formulation has been proposed to account for edge friction and interfacial friction between disk springs in configuration γ_2 and is compared with prior theory [6, 17–20, 26]. The proposed formula is then employed to evaluate the values of μ_e and μ_p from experimental results, as well as to assess the amount of hysteretic force. An updated continuously nonlinear displacement–dependent stiffness expression is then proposed and compared with measurements. However, the accuracy of continuous stiffness model is limited to only midrange displacement regimes as
large deviations from the measurements at low and high displacements are found. Prior literature [15–26] has mostly ignored stiffness formulations as only one continuous formulation [6] has been discussed. This article enriches the coned disk literature [1–2, 4, 6, 15–26, 30], and the characterization methods contained herein should be applicable to diagram springs and other nonlinear devices over the specified displacement regime [12].

Some of the limitations of theory presented here are inherently limited by the assumptions employed by Almen–Laszlo [6] in the load-deflection relationship. These might be overcome if the disk spring formulation proposed by Hübner et al. [31–32] could be sufficiently modified to account for the appearance of distinct regimes since it is based on shell theory. Finally, dynamic experiments on mechanical systems with embedded the coned disks should be conducted to assess effective elastic and damping properties; such future studies should be valuable from the perspective of constructing quasi zero stiffness type isolators [7–13].

Acknowledgments

We acknowledge the Smart Vehicles Concepts Center (www.SmartVehicleCenter.org) and the National Science Foundation Industry/University Cooperative Research Centers program (www.nsf.gov/eng/iip/iucrc) for partially supporting this basic research.
References

